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Abstract

We give the first linear-time algorithm for computing single-source shortest paths in
a weighted interval or circular-arc graph, when we are given the model of that graph,
i.e., the actual weighted intervals or circular-arcs and the sorted list of the interval
endpoints. Our algorithm solves this problem optimally in O(n) lime, where n is the
number of intervals or circular-arcs in a graph. An immediate consequence of our result
is an O(gn+nlogn) time algorithm for the minimum-weight circle-cover problem, where
g is the minimum number of arcs crossing any point on the circle; the nlogn term in this
time complexity is from a preprocessing sorting step when the sorled list of endpoints is
not given as part of the input. The previous best time bounds were O(nlogn) for this
shorlest paths problem, and O(gnlogn) for the minimum-weight circle-cover problem.
Thus we improve the bounds of both problems. More importantly, the techniques we
give hold the promise of achieving similar log n-factor improvements in other problems
on such graphs.

*Research supported in part by the Leonardo Fibonacci Institute in Trento, Italy, by the Air Force Office
af Scientific Research under Contract AFOSR-90-0107, and by the National Science Foundation under Grant
CCR-9202807.

| Research supported in part by the Leonardo Fibenacci Instilule in Trento, Iialy.

!Research supported in part by the Leonardo Fibonacei Inslilule in Trento, Tialy and by the National
Science Foundation under Grant CCR-8901815.




1 Introduction

Given a weighted set S of n intervals on a line, a path from interval I € § to interval J € §
is a sequence ¢ = (J1, Ja, ..., Ji) of intervals in 5 such that Jy = I, Jp = J, and J; and Jiy,
overlap for every i € {1,...,k—1}. The length of o is the sum of the weights of its intervals,
and o is a shortest path from I to J if it has the smallest length among all possible I-to-J
paths in 5. The single-source shortest paths problem is that of computing a shortest path
from a given “source” interval to all the other intervals. Our algorithm solves this shortest
paths problem on interval and circular-arc graphs optimally in O(n) time, when we are
given Llie model of such a graph, i.e., the actual weighled intervals or circular-arcs and
the sorted list of the interval endpoints. A node of an interval (resp., circular-arc) graph
corresponds to an interval (resp., circular-arc) and an edge is between two nodes in the
graph iff the two intervals (resp., circular-arcs) corresponding to these nodes intersect each
other. Note that an interval or circular-arc graph with » nodes can have O(n?) edges. Our
algorithm achieves the optimal O(n) time bound by exploiting several geometric properties
of this problem and by making use of the special UNION-FIND structure of [5].

Onc of the main applications of this shortest paths problem is to the minimum-weight
circle-cover problem (9, 3, 2, 8], whose definition we briefly review: Given a set of weighted
circular-arcs on a circle, choose a minimum-weight subset of the circular-arcs whose union
covers the circle. It is known [3] that the minimum-weight circle-cover problem can be solved
by solving g inslances of the previously mentioned single-source shortest paths problem,
where ¢ is the minimum number of arcs crossing any point on the circle (in (3], 2 minimum-
weight circle-cover is found in O(gn?) time). It is the circle-cover problem that has the
main practical applications, and the study of this shortest-paths problem has mainly been
for the purpose of solving the circle-cover problem. However, interval graphs and circular-
arc graphs do arise in VLSI design, scheduling, biology, traffic control, and other application
areas [4, G, 7], so that our shortest paths result may be useful in other optimization problems.
More importantly, our approach holds the promise of shaving a logn factor from the time
complexity of other problemns on such graphs.

We hencelorth assume that the intervals are given sorted by their left endpoints, and
also sorted by their right endpoints. This is not a limiting assuimnption in the case of the
main application of the shortest paths problem, which is the minimum-weight circle-cover

problem. In the latter problem, an O(nlogn) preprocessing sorting step is cheap compared




to the best previous bound for solving that problem, which was O(gnlogn) [8] (by using
g times the subroutine for solving the shortest paths problem, at a cost of O(nlogn) time
each). Using our shortest paths algorithm, the minimum-weight circle-cover problem is
solved in O{qn+nlogn) time, where the nlogn term is from the preprocessing sorting step
when the sorted list of endpoints is not given as part of the input. Therefore, in order to
establish the bound we claim for the minimum-weight circle-cover problem, it suffices to give
a linear-time algorithm for the shortest paths problem on interval graphs. The linear-time
solution to the shortest paths problem on circular-arc graphs makes use of the solution to
the shortest paths problem on interval graphs. Therefore, we mainly {ocus on the problem
of solving, in linear time, the shortest paths problem on interval graphs.

We also lienceforth assume, without loss of generality, that we are computing the shortest
paths from the source interval to only those intervals whose right endpoints are to the right
of the right endpoint of the source; the same algorithm that solves this case can, of course, be
used to solve the case for the shortest paths to inlervals whose left endpoints are to the left
of the left endpoint of the source. Clearly we need not worry aboul paths to intervals whose
right endpoints are covered by the source since the problem is trivial for those intervals —
the length of the shortest path is simply the sum of the weight of the source plus the weight
of the destination.

We consider.the shortest paths problem on interval (resp., circular-arc) graphs in which
the weights of the intervals (resp., circular-arcs) are nonnegative. The minimum-weight
circle-cover problem [3], however, does allow circular-arcs to have negative weights. Bertossi
[3] has already given a reduction of any minimum-weight circle-cover problem with both
negative and nonnegative weights to one with only nonnegative weights (to which the al-
gorithm for computing shortest paths in interval graphs with nonnegative weights is appli-
cable). Therefore it suffices Lo solve the shortest paths problem on interval graphs for the
case of nonnegative weights. Bertossi’s reduction introduces zero-weight intervals, so it is
important to be able to handle problems with zero-wcight intervals.

We only show how to compute the lengths of shortest paths. Qur algorithm can be
easily modified to handle the computation [or actual shortest paths and shortest path trees,
in O(n) time and O(n) space.

In the next section, we introduce some terminology needed in the rest of the paper.
Sections 3 and 4 consider the special case of the shortest paths problem on interval graphs

with only positive weights. In particular, Section 3 presents a preliminary suboptimal




algorithm which illustrates our main idea and observations, and Section 4 shows how to
implement various computation steps of the preliminary algorithm so that it runs optimally
in linear time. Section 5 gives a linear-time reduction that reduces the nonnegative weight
case to the positive weight case, and it shows how to use the solution to the shortest paths

problem on interval graphs to obtain the solution to that on circular-arc graphs.

2 Terminology

In this section, we introduce some additional terminology.

We say that an interval I contains another interval J iff 7N J = J. We say that [
overlaps with J iff their intersection is not empty, and that I properly overlaps with J iff
they overlap bul neither one contains the other.

An interval I is typically defined by its two endpoints, i.e., f = [a,b] where ¢ < b and a
(resp., b) is called the left (resp., right) endpoint of I. A point z is lo the left (resp., right)
of interval I = {a,b] ill £ < a (resp., b < z).

We assume that the input set S consists of intervals fy,..., I, where I; = [a;, b,
by € by < -+ < by, and that the weight of each interval [; is w; > 0. To avoid unnecessarily
cluttering the exposition, we assume that the intervals have distinct endpoints, that is, ¢ # j
implics a; # a;, b; # b;, a; # b, and b; # a; (the algorithm for nondistinct endpoints is a

trivial modification of the one we give).

Definition 1 We use S; o denote the subsel of S that consists of inlervals Iy, I, ..., I;.
We assume, without loss of generalily, that the union of all the I;’s in S covers the portion
of the line from a1 lo b,. We also assume, without loss of generalily, that the source interval

18 I]_.

Observe that for a set 5= of intervals, the union of all the intervals in 5= may form more
than one connected component. If for two intervals I’ and I" in §=, I’ and I” respectively
belong to two different connected components of the union of the intervals in 5=, then there

is no path between I' and I” that uses only the intervals in 5.

3 A Preliminary Algorithm

This section gives a preliminary, O(n loglogn) time (hence suboptimal} algorithm for the

special case of the shortest paths problem on intervals with positive weights. This should be




Figure 1: Fori = 1,2, ..., 10, »; = 15,12,13,17,17,19, 21, 13,15, 18, respectively.

viewed as a “warm-up” for the next section, which will give an efficient implementation of
some of the steps of this preliminary algorithm, resulting in the claimed lincar-time bound.
In Secction 5, we point out how the algorithm for positive-weight intervals can also be used
to solve problems with nonnegative-weight intervals.

We begin by introducing definitions that lead to the concept of an inactive interval
in a subset Sj, then proving lemmas about it that are the foundation of the preliminary

algorithm.

Definition 2 An extension of S; is a sel S thal consisls of S; and one or more intervals
(not necessarily in S) whose right endpoints are larger than b;. (There are, of course,

infinitely many choices for such an §'_)

Definition 3 An inlcrval I, in 5; (k < i) is inactive in S; iff for every ezlension §' of
S:, the Jollowing holds: Every J € §' — S; for which there is an I -to-J path in §' has no
shoriest I;-to-J path in 5 that uses Ir.. An inierval of §; which is nol inactive in S; is said

to be active in 5.

Intuitively, Ir is inactive in S; if the other intervals in 5; are such that, as far as any
interval J with right endpoint larger than b; is concerned, Ji; is “useless” for computing 2
shortest I;-to-J path (in particular, this is true for J € {fij1,...,1n}). In Figure 1, I3 is
inactive in 4, I3 is active in Sy, I5 is inactive in S5, Jg is inactive in Syp, and Ijp is active
in Sg-

Observe that an interval I;, that is active in S;, k£ < 7, may be inactive for an §; with
7 > i, bul is cerlainly active for any S; with & < j < ¢. On the other hand, an interval I

which is inactive for Sy, k& < 1, is also inactive for every §; with 7 > .



Note that I; is active in S; iff there is an Jy-to-I; path in S5; (i.e., if Ui <z<ilx covers the

portion of the line from a; to ;).

Lemma 1 The union of all the active intervals in 5; covers a conliguous portion of the

line from ay to some bj, where b; is the rightmost endpoint of any aclive interval in S;.

Proof. An immediate consequence of the fact that if Iy, k < ¢, is active in 5;, then there
is an I,-to-I path in S;. This is because if there is an I;-to-I; path in S5;, then there is
a shortest I;-to-I; path in S;, implying that every constituent interval of such a shortest

[1-to-Ii path is active in S5;. O

Definition 4 Let label;(i), 7 > 4, denote the length of a shortest Iy-to-I; path in § that

does nol use any Iy for which k > 7. By convention, if j < i, then label;(i) = +c0.

Observe that for all ¢, label| (i) < labely(i) < --- < label, (7). For an I} € Sy, if there
is no I -to-I; path in 5}, then obviously label;(7) = +oo, for every j =k, k+1,...,¢. In
Figure 1, labelg(7) = +oo, but label;o(7) = 71.

Qur algorithm is based on the following lemmas.
Lemma 2 Ifi > k and labeli(i) < labeli(k), then Iy is inactive in §;.

Proof. Since label() < label;(k), label(Z) is not +co. Hence there is an Ij-to-f; path in
S;, and there is an I,-to-I; path in S;. Because label;(?) < label;(k), it follows that there
is a shortest I;-to-I; path in §; that does not use I;: The union of the intervals on that
I-to-I; path contains I; (because i > k), and hence I is “useless” for any J € 57 — §;
where 57 is an extension of ;. a

The following are immediate consequences of Lemma 2.

Corollary 1 Let I;,I;,...,I;, be the aclive inlervals in §;, j1 < jo < -+ < jx. Then
labeli(71) < labeli(72) < - - < labeli(j)).

Figure 2 illustrates Corollary 1. Note thal the right endpoints of the active intervals
Iy Tipy oy I3, in Si are in the same sorted order as that of their labels labeli(4)), {abel;(j2),
..., label;i(jr). Their left endpoints, however, are not necessarily in such a sorted order (in

Figure 2, the left endpoints of the intervals are omitted, indicated by marks “...").

Corollary 2 If I; contains Iy (hence i > k) and label(k) > labeli(i), then Iy is inactive
in S;.
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Figurc 2: Nlustrating Corollary 1: labeli(j1) < labeli(j2) < --- < label;(jk)-
Lemma 3 Ifi> k and label;(i) < label;_1(k), then Iy is inactive in Si.

Proof. That labeli(i) < label;_;(k) implies that label;(i) is not +co. Hence there is an
I-to-I; patl in S;, and there is an Ij-to-I; path in S;. There are two cases to consider.
(i} The shortest ;-to-I; path in S; does not necd to use I;. Then label;_| (k) = labeli(k),
and hence labeli(i) < labeli(k). By Lemma 2, ]}, is inaclive in §;. (ii} The shortest [;-to-Iy
path in 5; does use I;. Then labeli(k) > labeli(i) + wy > labeli(%) (since wy > 0). Again by

Lemma 2, I is inaclive in §;. o

Lemma 4 If interval I, k > 1, does not contain any b; (5 < k) such that I; is active in

Si_1, then I is inaclive in §; for every i > k.

Proof. It suffices to prove that [ is inaclive in Sy. Suppose that I is active in 5. Then
by Lemma 1, the union of all the active intervals in Sy covers the contiguous portion of
the line from a; to by (note that by is the rightmost endpoint of any interval in Si). This
implies that I contains the right endpoint of at least one active interval in Sy other than
Ir. But all the intervals in Si_1 (= Sk — {Ix}) that I; intersects are inactive in Sk—g, and
hence they remain inactive in Sy, contradicting to that I intersects some active intervals
in 5} other than I. - a

We first give an overview of the algorithm. The algorithm scans the intervals in the order
Ii, L2, ..., I (i.e., the scan is based on the increasing order of the sorted right endpoints of
the intervals in 5). When the scan reaches I;, the following must hold before the scan can

procced to fiyq:

(1) All the active intervals in S; are stored in a tree T'.



(2) All the inactive intervals in §; have been marked as such (possibly at an earlier stage,

when the scan was at some [y with 7/ < 7).

(3) If I (k < i) is active in §;, then the correct labeli(k) is known.

If we can maintain the above invariants, then clearly when the scan terminates at I,
we already know the desired label,(2)’s for all I;’s which are active in §,. A postprocessing
step will then compute, in linear time, the correct label,()’s of the inactive I;’s in S, (more
on this later).

The details of the preliminary algorithm follow next. In this algorithm, the right end-
points of the active intervals are maintained in the leaves of the tree structure T', one

cndpoint per leaf, in sorted order.

1. Inttialize T to contain f;.

9. Fori = 2,3, ..., n, do the lollowing. Perform a scarch in T for a;. This gives the
smallest b; in T that is > a;. If no such b; exists, then (by Lemma 4) mark f; as
being inactive and proceed to i 4 1. So suppose such a b; exists. Set label;i(i) =
label;_1(j) + w:, and note that this implies that I; remains active in §; and has the
same label as in S;_,, i.e., labeli(j) = label;_1(j). Next, insert I; in T (of course
b; is then in the rightmost leaf of T). Then repeatedly check the leaf for I; which
is immediately to the left of the leaf for I; in T, to see whether I is inactive in §;
(by Lemma 3, i.e., check whether label;_1(k) < label;(1)), and, if J; is inactive, then
mark il as such, delete it from T, and repeat with the leaf made adjacent to I; by the
deletion of J;. Note that more than one leaf of T may be deleted in this fashion, but

" that the deletion process stops short of deleting J; itself, because it is [; that gave
I; its current label (i.c., label;(i) = label;_1(j) + wi > label;_1(j)). Of course any I,
whose leaf in T is not deleted is in fact active in 5; and already has the correct value
of labeli(€): Tt is simply the same as label;_;(£) and we need not explicitly update it
{the fact that this updating is implicit is important, as we cannot afford to go through

all the leaves of 7" at the iteration for each i).

When Step 2 terminates (at i = n), we have the values of the label,({)’s for all the
active I¢ in S,. The next step obtains the values of the label,(£)’s for the other

intervals (those that are inactive in Sy).



3. For every inactive I; in S, find the smallest right endpoint b; > a; such that I; is
active in S, and set label,(i) = label,(§) + wi. Note that by Lemma 1, such an J;
exists and it intersects I;. This step can be easily implemented by a right-to-left scan

of the sorted list of all the endpoints.

The correctness of this algorithm easily follows from the definitions, lemmas, and corol-
laries preceding it. Note that although a particular iteration in Step 2 may result in many
deletions from T', overall there are less than n such delelions. The time complexity of this
algorithm is O(nlogn) if we implement T as a 2-3 tree [1], but O(nloglogn) if we use
the data structure of Van Emde Boas {11] (the latter would require normalizing all the 2n
sorled endpoints so that they are integers between 1 and 2r}. The next section gives an
O(n) time implementation of the above algorithm. Note that the main bottleneck is Step

2, since the scan needed for Step 3 obviously takes linear time.

4 A Linear Time Implementation

As observed earlier, the main bottlencck is Step 2 of the preliminary algorithm given in the
previous section. We shall implement essentially the same algorithm, but without using the
trec 7. Instead, we use a UNION-FIND structure [5] where the elements of the sets are
integers in {1,...,n}, with integer ¢ corresponding to interval J;. Initially, each element ¢
is in a singleton set also named i, that is, initially set ¢ is {¢}. (We often call a set whose
name is integer 7 as set 7, with the understanding that set i{ may contain other elements
than i.) During the execution of Step 2, we maintain the following invariants (assume we

are at index ¢ in Step 2):

(1) To each currently active interval I; corresponds a set named j- U5y, Ly o0 Iy, are
the active intervals in §;, #, < i3 < --- < ix, then for every i; € {i1,4z,...,%k—1}, the
indices of the inactive intervals {I; | i; < £ < i;41} are all in the set whose name is
i;41. Set 4;41 consists of the indices of the above-mentioned inactive intervals, and
also of the index ¢;;; of the active interval I; .. Note that since I1 is always active,
iy = 1 in the above discussion, and the set whose name is 1 is a singleton (recall that
a preprocessing step has eliminated intervals whose right endpoints are contained in
interval I}). The next invariant is about intervals that are inactive and do not overlap

with any aclive interval.



(2) Let Loose(S;) denote the subset of the inactive intervals in 5; that do not overlap
with any active interval in §;. In Figure I, the active intervals in Sg are [y, [, Iy,
and Loose(Sy) consists of intervals Is,Jg, ..., 9. Observe that, based on Lemma 1,
every interval in Loose(S5;) is to the right of the union of the active intervals in §j;
furthermore, Loose(S;) is nonempty iff I; € Loose(S;). If Loose(S;) is not empty,
then let CCy,CCy,...,CC; be the connected components of Loose(S;): There is a
set named j; for every such CCy, where I, is the righimost interval in CC; (I} is the
interval in CC; having the largest right endpoint); we say that such an inactive I,
is special inactive. The (say) p elements in set j; correspond to the p intervals in
CCr; more specifically, they are the contiguous subset of indices {j; —p+ 1,5 — g+
2,...,J1— 1, 7i}. Note that j; — p is the set named j;_; if 1 <! < ¢, and that 7, = 1.
In Figure 1, for i = 9, CCy = {{5,1s,I7}, CCy = {I3,Is}, and the special inactive

intervals are f7 and fs.

(3) An auxiliary stack conlains the active intervals I; , I, - --, f;, mentioned in item (1)
above, with I;, at the top of the stack. We call it the active stack.

In Figure 1, for ¢ = 9, the active stack contains Iy, f3, I3 (wilh Iy at the top of the
stack).

{4) Another auxiliary stack contains the special inactive intervals I, I;,, ..., [; mentioned
in item {2) above, with [}, at the top of the stack. We call it the special inactive stack.

In Figure 1, for ¢ = 9, the special inactive stack contains J7, Ig (with Iy at the top of

the stack).

A crucial point is how to implement, in Step 2, the search for b; using g; as the key for
the scarch. This is closely tied to the way that the above invariants (1)—(4) are maintained.

It makes use of some preprocessing information that is described next.

Definition 5 For every I;, let Suce(l;) be the smallest index { such that a; < b, t.e.,
by =Min{b, | I,ef,a < b,-}.

In Figure 1, Suce(fs) = 5, Suce(lg) = 8, and Suee(l10) = 4.
Note that £ < ¢, and that £ = ¢ occurs when I; does not contain any b, other than

b;. Also, observe that the definition of the Succ {unction is static (it does not depend on

10




which intervals are active). The Suce function can easily be precomputed in linear time by
scanning right-to-left the sorled list of all the 2n interval endpoints.

The significance of the Succ function is that, in Step 2, instead of searching for b; using
a; as the key for the search, we simply do a FIND(Succ(;)): Let j be the set name returned
by this FIND operation. We distinguish 3 cases.

1. If j = ¢, then surely I; does not overlap with any interval in S;_; and it is inactive in
S; (by Lemma 4). We simply mark [; as being special inactive, push I; on the special

inactive stack, and move the scan of Step 2 to index ¢ + 1.

In Figure 1, this happens for ¢ =2,¢ =5, and : = 8.

2. If j < i and I; is active in S;_1, we set labeli(i) = label;_1(j) + w;. Then do the

following updates on the two stacks:

(a) We pop all the special inactive intervals I;, from their stack and, for each such [,
we do UNION(4;, 1), which results in the disappearance of set ¢; and the merging

of its elements with set 7; set  retains its old name.

In Figure 1, for ¢ = 10, this results in the disappearance of scts 7 and 9, and the

merging of their contents with set 10.

{b) We repeatedly check whether the top of the active stack, I;,, is going to become
inactive in §; because of I; (that is, because labeli(i) < label;_1(it)). I the
outcome of the test is that I;, becomes inactive, then we do UNION(3y,i), pop
I;, from the active stack, and continue with I;,_ , etc. If the outcome of the test
is that J;, is active in 5;, then we keep it on the active stack, push J; on the
active stack, and move the scan of Step 2 to index ¢ + 1.

In Figure 2, if I; is activein §;, 7 = 71, and labeli(7) < label;_1(j2)}, then the sets

J2, 73y -+, Ji disappear and their contents get merged with set .

3. If j < 7 and I; is special inactivein §;_1, then J; does not overlap with any active inter-
val in §;_; and it is inactive in 5; (by Lemma 4). But, I; does overlap with one or more
inactive intervals in S;_;, including the special inactive interval [;; more precisely, [;
overlaps with some connected components of Loose(5i—1) whose rightmost intervals
are conliguously stored in the stack of special inactive intervals. Let these connected

components with that I; overlaps be called, in left to right order, C;,C%,...,Cx. The

11




rightmost interval of Cy is I;. Let I;,, Ir,, ..., Ir, be therightmost intervals of (respec-
tively) Cs,Cs,. .., Cp (of course I, = I;_;). Observe that the top h intervals in the
stack of special inactive intervals are 1}, I, ..., Iy, with I;, (= [;_1) on top. Because
of J;, all of these k intervals will become inactive in §; (whereas they were special in-
active in §;_;). Their h sets {corresponding to Cy,C%,...,Ch} must be merged into
a new, single set having I; as its rightmost interval. I; is special inactive in ;. This

is achieved by:

(a) Popping I;,,...,I;,,I; from the stack of special inactive intervals,
(b) performing UNION(ry, 1), UNION(r4—y,1), - .., UNION(rg, ), UNION(j, ¢}, and

(c) pushing I; on the special inactive stack.

Observe that the total number of the UNION and FIND operations performed by our
algorithm is O(nr). I is well-known that a sequence of m UNION and FIND operations on
n elements can be performed in O(ma(m + n,n) + ») time [10], where a{m + n,n} is the
(very slow-growing) functional inverse of Ackermann’s function. Therefore, our algorithm
runs within the same time bound. However, it is possible to achieve O(n) time performance
for our algorithm, by the following observations.

In our algorithm, every UNION operation involves two set names thal are edjacent in
the sorted order of tlie currently existing set names. That is, if L is the sorted list of the set
names (initially L consists of all the integers from 1 to n), then a UNION operation always
involves two adjacent elements of L. Thus the underlying UNION-FIND structure we use
salisfies the requirements of the static tree set union in [5), in order to result in linear-time
performance: It is the linked list LL = (1,2,...,n), where the element in LL that follows
element { is nezt(£) = £+ 1, for every £ = 1,2, ...,7 — 1 (the requirement in 5] is that the
struclure be a static tree). Note thal the nezi function is static throughout our algorithm.
The UNION operation in our algorithm is always of the form unite(nezi(f), ), as defined
in [5], that is, it concatenates two disjoint but consecutive sublists of LL into one contiguous
sublist of LL. On this kind of structures, a sequence of m UNION and FIND operations on
n elements can be perlormed in O(m + n) time [5]. Therelore, the time complexity of our

algorithm is O(n).

12



5 Further Extensions

This section sketches how the shortest paths algorithm of the previous sections can be used
to solve problems where intervals can have zero weight, and how it can be used to solve the

version of the problem where we have circular-arcs rather than intervals on a line.

5.1 Zero-Weight Intervals

The astute reader will have observed that the definitions and the shortest paths algorithm
of the previous sections can be modified to handle zero-weight intervals as well. However,
doing so would unnccessarily clutter the exposition. Instead, we show in what follows that
the shortest paths problem in which some intervals have zero weight can be reduced in
linear time to one in which all the weights are positive. Not only does this simplify the
exposition, but the reduction used is of independent interest.

Let 1 be the version of the problem thal has zero-weight intervals, and let Z be the
nonemply subset of S that contains all the zero-weight intervals of §. First, observe that
in order to solve P1, it suffices Lo solve the problem P2 obtained from P1 by replacing
every connecled component CC of Z by a new zero-weight interval that is the union of the
zero-weight intervals in C'C (because the label of / € Z in P1 is the same as the label of
J = Usecel in P2). Hence it suffices to show how to solve P2. In what follows assume
thal we have already created, in O(n) time, P2 from P1. - -

We next show how to obtain, from P2, a problem P3 such that (i) every interval in
P3 has a positive weight (and therefore P3 can be solved by the algorithm of the previous
sections), and (ii) the solution to P3 can be used to oblain a solution to P2.

Recall that, by the definition of P2, two zero-weight intervals in it cannot overlap. P3 is
obtained [rom P2 by doing the following for cach zero-weight interval J = {a,d]: “cut out”
the portion of the problem in between & and b, that is, first erase, for every interval I of
P2, the portion of T in between @ and b, and then “pull” ¢ and b together so they coincide
in P3. This means that in P3, J has disappeared, and so has evef‘\}hintei‘val J' that was
contained in J. An interval J* in P2 that contained J, or that properly overlapped with J,
gels shrunk by the disappearance of its portion that used to overlap with J. For example, if
we imagine thal the situation in Figure 1 describes problem P2, and that J is (say) interval
Is in Figure 1 (so I, has zero weight), then “cutting” Iy results in the disappearance of I

and I3 and the “bringing together” of I} and fig so thal, in the new situation, the right
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endpoint of /1 coincides with the lelt endpoint of Iq.
Implementation Note: The above-described cutting-out process of the zero-weight intervals
can be implemented in linear time by using a linked list to do the cutting and pasting.
In particular, if in P2 an interval I of positive weight contains many zero-weight intervals
Jv, ..., Jk, the cutting-out of these zero-weight intervals does notf affect the representation
we use for 7 {although in a geometric sense [ is “shorter” afterwards, as far as the linked list
representation is concerned, it is unchanged). This is an important point, since it implies
that only the endpoints contained in a Ji are affected by the cutting-out of that Ji, and
such an endpoint gets updated only once because it is not contained in any other zero-weight
interval of P2 (recall that the zero-weight intervals of P2 are pairwise non-overlapping).
By delinition, P3 has no zero-weight intervals. So suppose P3 has been solved by using
the algorithm we gave in the earlier sections. The solution to P3 yields a solution to P2 in

the following way.

o Ifan interval I is in P3 (i.c., [ has not been cut out when P3 was obtained from P2),

then its label in P2 is exactly the same as its label in P3.

o Let J = [a,b] be a zero-weight interval which was cut out from P2 when P3 was
created. (In P3, a and & coincide, so in what follows when we refer to “a in P3" we
are also referring to bin 73.) For each such J = [e, §], compute in P3 the smallest label
of any interval of P3 thal contains a; Tlis is the label of J in P2. This computation
can be done for all such J’s by one linear-time scan of the endpoints of the active

intervals for 3.

» Suppose [ is a positive-weight interval of P2 that was cut out when P3 was created,
because it was contained in a zero-weight interval J of P2. Then the label of J in P2

is equal to: (weight of I) + (label of J in P2).
5.2 Circular-Arcs

The version of the shiortest paths problem where we have circular-arcs on a circle C instead of
intervals on a straight line can be solved by two applications of the shortest paths algorithm
for intervals: Suppose I = [a, b] is the “source” circular-arc, where a and b are now posttions
on circle C. (We use the convention of writing a circular-arc as a pair of positions on ihe
circle such that, when going {rom the first position to the second position along the arc, we

travel in the clockwise direction.)
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It is not hard to see that the following linear-time procedure solves the shortest paths

problem on circular-arc graphs.

Create a problem on a straight line by “opening” circle € at a. That is, create an =n-
interval problem by starting at « and traveling clockwise along C, putting the intervals
encountered during this trip on a straight line, until the trip is back at a. Intervals
that contain e are not included twice in the straight-line problem: Only their first
appearance on the clockwise trip is used, and they are “truncaled” at e {so that on the
line, they appear to begin at a, just like the source I;). Then solve the straight-line
problem so created, by using the algorithm for the interval case. The computation of

this slep gives each circular-arc a label.

Repeal the above step with @ playing the role of &, and “counterclockwise” playing

the role of “clockwise”.

The correct label for a circular-arc is the smaller of the two labels, computed above,

{for the intervals corresponding to that arc.
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