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Abstract

We give the firsl.linear-time algorithm for computing single-source shortest paths in
a weighted interval or circular-arc graph, when we arc given the model of that graph,
i.e" the actual weighted intervals or circular"arcs and the sorted list of the interval
endpoints. Our algorithm solves this problem optimally in O(n) time, where n is the
nUlIlber of intervals or circular-arcs in a graph. An immediate consequence of our result
is an O(qn+n log n) time algorithm for the minimum-weight circle-cover problem, where
q is the minimum number of arcs crossing any point on the circle; the n log n term in this
time complexity is from a preprocessing sorting step when the sorted list of endpoints is
not given as part of the input. The previous best time bounds were O(nlogn) for this
shorLest paLils problem, and O(qnlogn) for the minimum-weight circle-cover problem.
Thus we improve the bounds of both problems. More importantly, the techniques we
give hold the promise of achieving similar log n-factor improvements in other problems
on such graphs.

"Research supported in part by the Leonardo Fibonacci Institute in Trento, Italy, by the Air Force Office
of Scientific Research under Contract AFOSR-90-0107, and by the National Science Foundation under Grant
CCR-!l202807.

IResearch supported in part by the Leonardo Fibonacci Institute in Trento, Italy.
IRcsearch supported in part by the Leonardo Fibonacci Institute in Trento, Italy and by the National

Science FOlllldation under Grant CCR-8901815.

1



1 Introduction

Given a weighted set S of n intervals on a line, a path from interval I E S to interval J E S

is a sequence ()" = (J1, J2• ... , h) of intervals in S such that J1 = I, Jk = J, and hand h+l

overlap for every i E {I, ... I k -1}. The length of (J' is the sum of the weights of its intervals,

and a is a shortest path from I to J if it has the smallest length among all possible I-to-1

paths in S. The single-source shortest paths problem is that of computing a shortest path

from a given "source" interval to all the other intervals. OUf algorithm solves this shortest

paths problem on interval and circular-arc graphs optimally in O(n) time, when we are

given the model of such a graph, l.e., the actual weighted intervals or circular-arcs and

the sorted list of the interval endpoints. A node of an interval (resp., circular-arc) graph

corresponds to an interval (resp'l circular-arc) and an edge is between two nodes in the

graph iff the two intervals (resp., circular-arcs) corresponding to these nodes intersect each

other. Note that an interval or circular-arc graph with n nodes can have O(n2 ) edges. Our

algorithm achieves the optimal O(n) time bound by exploiting several geometric properties

of this problem and by making usc of the special UNION-FIND structure of [5].

One of the main applications of this shortest paths problem is to the minimum-weight

circle-cover problem [9, 3, 2, 8J, whose definition we briefly review: Gi ven a set of weighted

circular-arcs on a circle, choose a minimum-weight subset of the circular-arcs whose union

covers tIle circle. It is known [3J that the minimum-weight circle-cover problem can be solved

by solving q instances of the previously mentioned single-source shortest paths problem,

where q is the minimum numbQr of arcs crossing any point on the circle (in [3], a minimum­

weight circle-cover is found in O(qn2 ) time). It is the circle-cover problem thaI. has the

main practical applications, and the study of this shortest-paths problem has mainly been

for the purpose of solving the circle-cover problem. However, interval graphs and circular­

arc graphs do arise in VLSI design, scheduling, biology, traffic control, and other application

areas [4, G, 7}, so that our shortest paths result may be useful in other optimization problems.

More importantly, our approach holds the promise of shaving a logn factor from the time

complexity of other problems on such graphs.

We henceforth assume that the intervals are given sorted by their left endpoints, and

also sorted by their right endpoints. This is not a limiting assumption in the case of the

main application of the shortest paths problem, which is the minimum-weight circle-cover

problem. In the laUer problem, an O(nlogn) preprocessing sorting step is cheap compared
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to the best previous bound for solving that problem, which was O(qnlogn) [8J (by us1ng

q times the subroutine for solving the shortest paths problem, at a cost of O(n log n) time

each). Using our shortest paths algorithm, the minimum-weight circle-cover problem is

solved in O(qn + n log n) time, where the nlog n term is from the preprocessing sorting step

when the sorted list of endpoints is not given as part of the input. Therefore, in order to

establish the bound we claim for the minimum-weight circle-cover problem, it suffices to give

a linear-time algorithm for the shortest paths problem on interval graphs. The I1near-time

solution to the shortest paths problem on circular-arc graphs makes use of the solut10n to

the shortest paths problem on interval graphs. Therefore, We mainly focus on the probl;ffi

of solving, in linear time, the shortest paths problem on 1nterval graphs.

\Ve also henceforth assume, without loss of general1ty, that we are computing the shortest

paths from the source interval to only those 1ntervals whose rlght endpoints are to the right

oftl1\! right endpoint of the source; the same algorithm that solves this case can, of course, be

used to solve the case for the shortest paths to intervals whose left endpoints arc to the left

of the left endpoint of the source. Clearly we need not worry about paths to intervals whose

right endpoints are covered by the source s1nce the problem is trivial for those intervals ­

the length of the shortest path is simply the sum of the weight of the source plus the weight

of the destination.

We consider.lhe shortest paths problem on interval (resp., circular-an.:) graphs in which

the weights of the intervals (resp., circular-arcs) are nonnegatlve. The minimum-weight

elrcle-cover problem [3], however, does allow circular-arcs to have negative weights. Bertossi

[3J has already given a reduction of any minimum-weight circle-cover problem w1th both

negative and nonnegative weights to one with only nonnegative weights (to which the al­

gorithm for computing shortest paths in interval graphs with nonnegative weights is appli­

cable). Therefore it suffices to solve the shortest paths problem on interval graphs for the

case of nonnegat1ve we1ghts. Dertossi's reduction 1ntroduces zero-we1ght intervals, so 1t is

important to be able to handle problems w1th zero-weight intervals.

We only show how to compute the lengths of shortest paths. Our algorithm can be

easily modified to handle the computation for actual shortest paths and shortest path trees,

in O(n) time and O(n) space.

In the next section, we introduce some terminology needed 1n the rest of the paper.

Sections 3 and 4 consider the special case of the shortest paths problem on interval graphs

with only positive weights. In particular, Section 3 presents a preliminary suboptimal
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algorithm which illustrates our main idea and observations, and Section 4 shows how to

implement various computation steps of the preliminary algorithm so that it runs optimally

in linear time. Section 5 gives a linear-time reduction that reduces the nonnegative weight

case to the positive weight ease, and it shows how to use the solution to the shortest paths

problem on interval graphs to obtain the solution to that on circular-arc graphs.

2 Terminology

In this section, we introduce some addltional terminology.

"Ve say that an interval I contains another interval J iff I n J ::: J. We say that I

overlaps with J iff their illtersection is not empty, and that I properly overlaps with J iff

they overlap but neither one contains the other.

An interval I is typically defined by its two endpoints, i.e., 1::: [a,b] \vhere a :::; b and a

(resp., b) is called the left (resp., right) endpoint of I. A point x is to the left (resp., right)

of interval I ::: [a, b] iff x < a (resp., b < x).

V\'e assume that the input set S consists of intervals ft, ... , Inl where Ii ::: [ai, bi],

bl :::; b2 :::; ••• :::; bn , and that the weight of each interval Ii is Wi ~ O. To avoid unnecessarily

cluttering the exposition, we assume that the intervals have distinct endpoints, that is, i # j

implies Ui i ai, bi # bi, Ui i bi, and b i i Uj (the algorithm for nondistinct endpoints js a

trivial modification of the one \ve give).

Definition 1 We use Si to denote the subset oj S that consists of intervals ft, h, ... 1 h

We assume, without loss of generality, that the union of all the Ii's in S covers the portion

of the line from al to bn . We also assume, without loss ofgenerality, that the source interval

is ft.

Observe that for a set S· of intervals , the union of all the intervals in S· may form more

than one connected component. If for two intervals I' and ]'I in S·, I' and I" respectively

belong to two different connected components of the union of the intervals in S·, then there

is no path between I' and If! that uses only the intervals in S·.

3 A Preliminary Algorithm

This section gives a preliminary, O(nloglogn) time (hence suboptimal) algorithm for the

special case of the shortest paths problem on intervals with positive weights. This should be
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Figure 1: For i = 1, 2, ... , 10, Wi = 15,12,13,17,17,19,21,13,15,18, respectively.

viewed as a "warm-up" for the next section, which will give an efficient implementation of

some of the steps of th.is preliminary algorithm, resulting in the claimed linear-time bound.

In Section 5, we point out how the algorithm [or positive-weight intervals can also be used

to solve problems with nonnegative-weight intervals.

We begin by introducing definitions that lead to the concept of an inactive interval

III a subset Sj, then proving lemmas about it that are the foundation of the preliminary

algorithm.

Definition 2 An extension of Sj is a set 5' that consists of Sj and one or more intervals

(not necessarily in S) whose right endpoints are larger than hi. (There are, of course,

infinitely many choices for such an S'.)

Definition 3 An interval h in Sj (k ~ i) is inactive in S, iff for every extension S' of

Si, the Jollowing holds: Every J E S' - Si Jar which there is an I1 -to-J path in S' has no

shortest Irto-J path in S' that uses h. An interval of Si which is not inactive in Si is said

to be active in Si-

Intuitively, h is inactive in Sj if the other intervals in Sj are such that, as far as any

interval J with right endpoint larger than bi is concerned, h is "useless" for computing a

shortest 11-to-J path (in particular, this is true for J E {JiHI ... ,ln}). In Figure 1, 12 is

inactive in S4, h is active in S4, Is is inactive in S5, 19 is inactive in SIO, and flO is active

in 5 10 -

Observe that an interval h that is active in Sj, k ~ i, may be inactive for an Sj with

j > i, [ml is certainly active for any Sj with k :s; j ~ i. On the other hand, an interYal 1k

which is inactive for Si, k S i, is also inactive for every Sj with j > i.
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Note that Ii is active in Si iff there is an I1-to-li path in Si (i.e., if Ul<k<ih covers the

portion of the line from al to bi).

Lemma 1 The union of all the active intervals in 5i covers a contiguous portion of the

line from a1 to some bj , where bj is the rightmost endpoint of any active interval in 5 i .

Proof. An immediate consequence of the fact that if h, k ::; i, is active in Sj, then there

is an Ii-to-h path in 5i. This is because if there is an I1-to-h path in 5i, then there is

a shortest II-to-h path in 5i, implying that every constituent interval of such a shortest

It -to-h path is active in 5,.. 0

Definition 4 Let labclj(i), j ~ i, denote the length of a shortest I1-to-li path in 5 that

docs not usc any h for which k > j. By convention, ifj < i, then labelj(i) = +00.

Observe that for all i, labell(i) ::; labeI2(i) ::; ... ::; labcln(i). For an h ESt, if there

is no II-to-h path in 5i, then obviously labeli(j) = +00, for every j = k, k + 1, ... , i. In

Figure 1, labelg(7) = +00, but labellO(7) = 71.

Our algorithm is based on the following lemmas.

Lemma 2 Iii> k and labeli(i) < label;;(k), then Ik is inactive in 5i.

Proof. Since label;(i) < labeli(k), labeli(i) is not +~. Hence there is an I1-to-I; path in

S;, and there is an h-to-h path in 5i. Because labeli(i) < labeli(k), it follows that there

is a shortest It-to-li path in Si that does not use h: The union of the intervals on that

II "to-Ii path contains I,. (because i > k), and hence h is "useless" for any J E S' - Si

where 5 f is an extension of Si. 0

The following are immediate consequences of Lemma 2.

Corollary 1 Let Ijl , Ij2 , ,Ijk be the active intervals in 5i, j1 < j2 < ... < J,.;. Then

labcli(h) S labeli(12) ::; ::; labeli(A)·

Figure 2 illustrates Corollary 1. Note that the right endpoints of the active intervals

Ij1 ,112,'" ,!jk in 5i are in the same sorted order as that of their labels label.(jd, labeli(12),

... , labcli(jk). Their left endpoints, however, are not necessarily in such a sorted order (in

Figure 2, the left endpoints of the intervals are omitted, indicated by marks ".. _").

Corollary 2 If Ii contains h (hence i > k) and labeli(k) > label;(i), then h is inactive

in 5i.
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Figure 2: ntustrating Corollary 1: labeliCh) ::; label;(h) S; .. -:::; label;(jk).

Lemma 3 Ifi > k and labcl;(i) < /abe/;_l(k), then h is inactive in 5•.

Proof. That labcl;(i) < labcli_t(k) implies that /abel;(i) is not +00. Hence there 1s an

frto-I; path in 5i, anu there is an Irto-h path in Si- There are two cases to consider.

(i) The shortest h-to-I,. path in Sj does not need to use h Then labeli_l(k) = labe.lj(k),

and hence labeli(i) < Labelj(k). By Lemma 2, h is inactive in Sj_ (ii) The shortest h-to-Ik

path ill 5 i does use Ii. Then labcl,(k) ~ labeh(i)+wk > labelj(i) (since Wk > 0). Again by

Lemma 2, h is inactive in Si. 0

Lemma 4 If interval h, k > 1, does not contain any bi (j < k) such that Ii is active in

Sk_l, then h is inactive in Sj for every i ;::: k.

Proof. It suffices to prove that h is inactive in Sk. Suppose that h is active in Sk. Then

by Lemma 1, the union of all the active intervals in Sk covers the contiguous portion of

the line from a1 to bk (note that bk is the rightmost endpoint of any interval in Sk). This
, '

implies that h contains the right endpoint of at least one active interval in Sk other than

h. But all the intervals in Sk_1 (= Sk - {h}) that h intersects are inactive in Sk-1> and

hence they remain inactive in Skl contradicting to that h intersects some active intervals

in Sk other than h. 0

vVe first give all overview of the algorithm. The algorithm scans the intervals in the order

II, h, ... , In (1.e., the scan is based on the increasing order of the sorted right endpoints of

the interva.ls in S). When the scan reaches Ii, the following must hold before the scan can

proceed to 1,+1:

(1) All the active intervals in S, are stored in a tree T.
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(2) All the inactive intervals in Si have been marked a.<i such (possibly at an earlier stage,

when the scan was at some Ii' with i' < i).

(3) If h (k ~ i) is active in Sj, then the correct labcli(k) is known.

If we can maintain the above invariants, then clearly when the scan terminates at In'

we already know the desired labeln(i)'s for all Ii'S which are active in Sn. A postprocessing

step will then compute, in linear time, the correct lahcln(i)'s of the inactive Ii'S in Sn (more

on this later).

The details of the preliminary algorithm follow next. In this algorithm, the right end­

points of the active intervals are maintained in the leaves of the tree structure T, one

elHlpoint per leaf, in sorted order.

1. Initialize T to contain h.

2. For i:::: 2, 3, "', n, do the following. Perform a search in T for ai. TItis gives the

smallest hi ill T that is > ai. If no such hi exists, then (by Lemma 4) mark Ii as

being inactive and proceed to i + 1. So suppose such a hi exists. Set lahelj(i) =

labcli_l(j) + Wi, and note that this implies that I j remains active in S.. and has the

same label as in 8;-1, I.e., label;U) = labcl;_lU), Next, insert Ii in T (of course

bi is then in the rightmost leaf of T). Thcm repeatedly check the leaf for h which

is immediately to the left of the leaf for Ii in T, to see ,...-hether h is inactive in S;

(by Lemma 3, i.e., check whether labeh_l(k) < labelj(i)), and, if h is inactive, then

mark it as such, delete it from T, and repeat with the leaf made adjacent to Ii by the

deletion of h. Note that more than one leaf of T may be deleted in this fashion, but

that the deletion process stops short of deleting Ij itself, because it is Ii that gave

I .. its current label (i.e., label..(i) :::: labeli_IU) +Wi ~ labeli_l(j)). Of course any It

whose leaf in T is not deleted is in fact active in S, and already has the correct value

of labcl;(l): It is simply the same a.<i label'_lee) and we need not explicitly update it

(the fact that tltis updating is implicit is important, as we cannot afford to go through

all the leaves of T at the iteration for each i).

vVhen Step 2 terminates (at i :::: n), we have tlle values of the labdn(£)'s for all the

activl:! it in "n' The next step obtains the values of the labeln{f)'s for tlll:! other

intervals (those that are inactive in "En).

8



3. For every inactive Ii in Sn, find the smallest right endpoint bi > ai such that Ii is

activf! in Sn, and set labeln(i) = labeln(j) +Wi. Note that by Lemma 1, such an Ii

exists and it intersects 1;. This step can be easily implemented by a right-to-left scan

of the sorted list of all the endpoints.

The correctness of this algorithm easily follows from the definitions, lemmas, and carol·

laries preceding it. Note that although a particular iteration in Step 2 may result in many

deletions from T, overall there are less than n such deletions. The time complexity of this

algorithm is O(nlogn) if we implement T as a 2-3 tree [1], but O(nloglogn) if we use

the data structure of Van Emde Boas (11] (the latter would require normalizing all the 2n

sorted endpoints so that they are integers between 1 and 2n). The next section gives an

O(n) time implementation of the above algorithm. Note that the main bottleneck is Step

2, since the scan needed for Step 3 obviously takes linear time.

4 A Linear Time Implementation

As observed earlier, the main bottleneck is Step 2 of the preliminary algorithm given in the

previous section. We shall implement essentially the same algorithm, but without using the

tree T. Instead, we use a UNION-FIND structure [5] where the elements of the sets are

integers in {I, .. . ,n}, with integer i corresponding to interval h Initially, each element i

is in a singleton set also named i, that is, initially set i is {i}. (We often call a set whose

Ilame is integer i as set i, with the understanding that set i may contain other elements

than i.) During tlw execution of Step 2, we maintain the following invariants (assume we

are at index i in Step 2):

(1) To each currently active inte'rval Ii corresponds a set named j. If h,Ii], ... ,I;k are

the active intervals in S;, it < i 2 < _.. < ik, then for every ii E {iI, i 2,···, ik-d, the

indices of the inactive intervals {It I ii < f. < ij+l} are all in the set whose name is

ii+l. Set ii+l consists of the indices of the above-mentioned inactive Intervals, and

also of the index ii+l of the active interval Ii
J
+1 • Note that since II is always active,

i 1 = 1 in the above discussion, and the set ,...·hose name is 1 is a singleton (recall that

a preprocessing step has eliminated intervals whose right endpoints are contained in

interval Id. The next invariant is about intervals that are inactive and do not overlap

with any acti ve interval.
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(2) Let Loose(Si) denote the subset of the inactive intervals in 5, that do not overlap

with any active interval in S" In Figure 1, the active intervals in Sg are I!, I 3 , 14 ,

and Loose(Sg) consists of intervals Is, h, ... , I g. Observe that, based on Lemma 1,

every interval in Loose(Si) is to the right of the union of the active intervals in 5i;

furthermore, Loose(5i) is nonempty iff Ii E Loose(Si)' H Loose(Si) is not empty,

then let Cel ,ee2 , .•• ,ect be the connected components of Loose(S;): There is a

set named j/ for every such eet, where IiI is the rightmost interval in eCI (IiI is the

interval in eet having the largest right endpoint); we say that such an inactive IiI

is special inactive. The (say) Jl elements in set it correspond to the J1 intervals in

eet; more specifically, they are the contiguous subset of indices {j/ - J1 + l,j/ - J1 +
2, ... ,jl- l,jl}' Note that j/ - J1 is the set named il-l if 1 < l 5; t, and that it = i.

In Figure 1, for i = 9, eel = {Is,I6,!r}, eC2 :::: {Is,!g}, and the special inactive

intervals are I; and I g •

(3) An auxiliary stack contains the active intervals 1'1,1;2" __ , IiI< mentioned in item (1)

above, with Iik at the top of the stack. We call it the active stack.

In Figure 1, for i :::: 9, the active stack contains h,!3,!4 (with 14 at the top of the

stack).
-', .'

(4) Another auxiliary stack contains the special inactive intervals IJt, Ih' ... , Ii, mentioned

in item (2) above, with lj, at the top of the stack. We call it the special inactive stack.

In Figure 1, for i:::: 9, the special inactive stack contains I 7 ,lg (with I g at the top of

the stack).

A crucial point is how to implement, in Step 2, the search for bi using aj as the key for

the search. This is closely tied to the way that the above invariants (1)-(4) are maintained.

It makes use of some preprocessing information that is described next.

Definition 5 For every h let SUCC(Ii) be the smallest index £ such that ai < btl t.e.,

ht ::::Min{bT I IT E S,a, < bTl·

In Figure 1, Succ(Js):::: 5, Succ(Jg):::: 8, and SUCC(IlO) = 4.

Note that f. :s; i, and that £. :::: i occurs when Ii does not contain any bT other than

hi· Also, observe that the definition of the Succ function is static (it does not depend on

10



which intervals are active). The Suee function can easily be precomputed in linear time by

scanning right-to-Ieft the sorted list of all the 2n interval endpoints.

The signifitance of the Succ function is that, in Step 2, instead of searching for bi using

Ui as the key for the search, we simply do a FIND(Suec(Ii)): I.Jet j be the set name returned

by this FIND operation. We distinguish 3 cases.

1. If j = i, then surely h does not overlap with any interval in Si_l and it is inactive in

Sj (by Lemma 4). vVe simply mark h as being special inactive, push Ii on the special

inactive stack, and move the scan of Step 2 to index i + l.

In Figure 1, this happens for i = 2, i = 5, and i = 8.

2. If j < i and Ij is active in Si_l, we set labcli(i)

following updates on the two stacks:

label;_I(j) +W l-. Then do the

(a) We pop all the special inactive intervaIs Ii
l

from their stack and, for each such lip

we do UNION(i/, i), which results in the disappearance of set il and the merging

of its elements with set ij set i retains its old name.

In Figure 1, faT i = 10, thls results in the disappearance of sets 7 and 9, and the

merging of their contents with set 10.

(b) We repeatedly check whether the top o{the active stack, Ii", is going to become

inactive in Si because of Ii (that is, because /abeli(i) < label;_l(ik)). If the

outcome of the test is that Ii;; becomes inactive, then we do UNION(ik,i), pop

Ii" from the active stack, and continue with [;1:-1' etc. If the outcome of the test

is that Ii" is active in Sj, then we keep it on the active stack, push Ii on the

active stack, and move the scan of Step 2 to index i + 1.

In Figure 2, if Ii is active in Si, j = jl, and labeli(i) < labeli_l(h), then the sets

h,j3, ... ,jk disappear and their contents get merged with set i.

3. If j < i and Ii is special inactive in S;_I, then Ii does not overlap with any active inter­

valin 5'i-1 and it is inactive in Si (by Lemma 4). But, Ii does overlap with one or more

inactive intervals in Si_l, including the special inactive interval Ii; more precisely, Ii

overlaps with some connected components of LOOSC(Si_tl whose rightmost intervals

are contiguously stored in the stack of special inactive intervals. Let these connected

components with that Ii overlaps be called, in left to right order, C1 ,C2 , .•• ,Ch. The
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rightmost interval of C1 is I j . Let IT2 , IT:!.,' .. ,ITh be the rightmost intervals of (respec­

tively) C2,C3, ... ,Ch (of course I Th == Ii-d. Observe that the top h intervals in the

stack of special inactive intervals are Ij,Ir2" .. ' IT!>, with ITh (= Ii_1) on top. Because

of Ii, all of these h intervals will become inactive in Sj (whereas they were special in­

active in Si-d. Their h sets (corresponding to C1 ,C2 , .•• ,Ch) must be merged into

a new, single set having Ii as its rightmost interval. Ii is special inactive in Sj. This

is achieved by:

(a) Popping IT", ... , I T2 ,Ij from the stack of special inactive intervals,

(b) performing UNION(rh, i), UNION(rh_l, i), ... , UNION(T2' i), UNION(j, i), and

(c) pushing Ii on the special inactive stack.

Observe that the total number of the UNION and FIND operations performed by our

algorithm is O(n). It is well-known that a sequence ofm UNION and FIND operations on

n elements can be performed in O(mo(m + n, n) + n) time [10], where o(m +n, n) is tIl(!

(very slow-growing) functional inverse of Ackermann's function. Therefore, our algorithm

runs within the same time bound. However, it is possible to achieve O(n) time performance

for our algorithm, by the following observations.

In our algorithm, every UNION operation involves two set names that are adjacent in

the sorted order of the currently existing set names. That is, if L is the sorted list of the set

names (initially L consists of all the integers from 1 to n), then a UNION operation always

involves two adjacent elements of L. Thus the underlying UNION-FIND structure we use

satisfies the requirements of the static tree set union in [5], in order to result in linear-time

performance: It is the linl:ed list LL = (1,2, , n), where the element in IL that follows

element £ is next(f) = £+1, for every f = 1,2, ,n-l (the requirement in [5] is that the

structure be a static tree). Note that the next function is static throughout our algorithm.

The UNION operation in our algorithm is always of the form unite(next(f), e), as defined

in [5J, that is, it concatenates two disjoint but consecutive sublists of LL into one contiguous

sublist of IL. On this kind of structures, a sequence of m UNION and FIND operations on

n elements can be performed in O(m +n) time [5]. Therefore, the time complexity of our

algorithm is O(n).
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5 Further Extensions

This section sketches how the shortest paths algorithm of the previous sections can he used

to solve problems where intervals can have zero weight, and how it can be used to solve the

version of the problem where we have circular-arcs rather than intervals on a line.

5.1 Zero-Weight Intervals

The astute reader will have observed that the definitions and the shortest paths algorithm

of the previous sections can he modified .to l~andle zero-weight intervals as well. However,

doing so would unnecessarily clutter the exposition. Instead, we show in what follows that

the shortest paths problem in which some intervals have zero weight can be reduced in

linear time to one in which all the weights are positive. Not only does this simplify the

exposition, but the redudion used is of independent interest.

Let PI be the version of the problem that has zero-weight intervals, and let Z be the

nonempty subset of S that contains all the zero-wC!ight intervals of S. First, observe that

in order to solve Pl, it suffices to solve the problem P2 obtained from PI by replacing

every conneded component CC of Z by a new zero-weight interval that is the union of the

zero-weight intervals in CC (because the label of J E Z in PI is the same 3.<; the label of

J = UIECC[ in P2). Hence it suffices to show hm\' to solve P2. In what follows assume

that we have already created, in D(n) time, P2 from PI.

We next show how to obtain, from P2, a problem P3 such that (i) every interval in

P3 has a positive weight (and therefore P3 can be solved by the algorithm of the previous

sedions), and (ii) the solution to P3 can be used to obtain a solution to P2.

Recall that, by the definition of P2, two zero-weight intervals in it cannot overlap. P3 is

obtained [rom P2 by doing the following for each zero-weight interval J = [u, b]: "cut out"

the portion of the problem in between a and b, that is, first erase, for every iilterval I of

P2, the portion of I in between a and b, and then "pull" a and b together so they coincide

in P3. This means that in P3, J has disappeared, and· so has every'interval JI that was

contained in J. An interval J" in P2 that contained J, or that properly overlapped with J,

gets shrunk by the disappearance of its portion that used to overlap with J. For example, if

we imagine that the situation in Figure I describes problem P2, and that J 1s (say) interval

/4 in Figure I (so /4 has zero weight), then "cutting" J4 results in the disappearance of /2

and h and the "bringing together" of It and Ito so that, in the new situation, the right
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endpoint of It coincides with the left endpoint of 110 .

Implementation Note: The above-described cutting-out process of the zero-weight intervals

can be implemented in linear time by using a linked list to do the cutting and pasting.

In particular, if in P2 an interval I of positive weight contains many zero-weight intervals

J1 , ••. , Jk , the cutting-out of these zero-weight intervals does not affect the representation

we use for 1 (although in a geometric sense I is "shorter" afterwards, as far as the linked list

representation is concerned, it is unchanged). This is an important point, since it implies

that only the endpoints contained in a h are affected by the cutting-out of that h, and

such an endpoint gets updated only once because it is not contained in any other zero-weight

interval of P2 (recall that the zero-weight intervals of P2 are pairwise non-overlapping).

By definition, P3 ha.') no zero-weight intervals. So suppose P3 has been solved by using

the algorithm we gave in the earlier sections. The solution to P3 yields a solution to P2 in

the follmving way.

• If an interval 1 is in P3 (i.c., I has not been cut out wIlen P3 was obtained from P2),

then its label in P2 is exactly the same as its label in P3.

• Let J = [a, bj be a zero-weight interval which was cut out from P2 when P3 was

created. (In P3, a and b coincide, so in what follows when we refer to "a in P3" we

<l;~e also referring to b in P3.) For each such J = [a, bj, compute in P3 the smallest label

of any interval of P3 that contains a: TILis is the label of J in P2. This computation

can be done for all such J's by one linear-time scan of the endpoints of the active

intervals for P3.

• Suppose 1 is a positi~~-weight interval of P2 that was cut out when P3 was created,

because it was contained in a zero-weight interval J of P2. Then the label of J in P2

is equal to: (weight of 1) + (label of J in P2).

5.2 Circular-Arcs

The version of the shortest paths problem where we have circular-arcs on a circle C instead of

intervals on a straight line can be solved by two applications of the shortest paths algorithm

for intervals: Suppose h = [a, bj is the "source" circular-arc, where a and b are now positions

on circle C. (We use the convention of writing a circular-arc as a pair of positions on the

circle such that, when going from the first position to the second position along the arc, we

travel in the clockwise direction.)
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It is not hard to see that the following linear-time procedure solves the shortest paths

problem on circular-arc graphs.

• Create a problem on a straight line by "opening" circle C at a. That is, create an n­

interval problem by starting at a and traveling clockwise along C, putting the intervals

encountered dlldng this trip on a straight line, until the trip is back at a. Intervals

that contain a are not included twice in the straight-line problem: Only their first

appearance on the clockwise trip is used, and they are "truncated" at a (so that on the

line, they appear to begin at a, just like the source Id. Then solve the straight-line

problem so created, by using the algorithm for the interval ca.c;e. The computation of

this step gives each circular-arc a label.

• Repeat the above step with a playing the role of b, and "counterclockwise" playing

the role of "clockwise".

• The correct label for a circular-arc is the smaller of the two labels, computed above,

for the intervals corresponding to that arc.
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