3,628 research outputs found

    Description of nuclear systems with a self-consistent configuration-mixing approach. I: Theory, algorithm, and application to the 12^{12}C test nucleus

    Full text link
    Although self-consistent multi-configuration methods have been used for decades to address the description of atomic and molecular many-body systems, only a few trials have been made in the context of nuclear structure. This work aims at the development of such an approach to describe in a unified way various types of correlations in nuclei, in a self-consistent manner where the mean-field is improved as correlations are introduced. The goal is to reconcile the usually set apart Shell-Model and Self-Consistent Mean-Field methods. This approach is referred as "variational multiparticle-multihole configuration mixing method". It is based on a double variational principle which yields a set of two coupled equations that determine at the same time the expansion coefficients of the many-body wave function and the single particle states. The formalism is derived and discussed in a general context, starting from a three-body Hamiltonian. Links to existing many-body techniques such as the formalism of Green's functions are established. First applications are done using the two-body D1S Gogny effective force. The numerical procedure is tested on the 12^{12}C nucleus in order to study the convergence features of the algorithm in different contexts. Ground state properties as well as single-particle quantities are analyzed, and the description of the first 2+2^+ state is examined. This study allows to validate our numerical algorithm and leads to encouraging results. In order to test the method further, we will realize in the second article of this series, a systematic description of more nuclei and observables obtained by applying the newly-developed numerical procedure with the same Gogny force. As raised in the present work, applications of the variational multiparticle-multihole configuration mixing method will however ultimately require the use of an extended and more constrained Gogny force.Comment: 22 pages, 18 figures, accepted for publication in Phys. Rev. C. v2: minor corrections and references adde

    Outer crust of a cold non-accreting magnetar

    Get PDF
    The outer crust structure and composition of a cold, non-accreting magnetar is studied. We model the outer crust to be made of fully equilibrated matter where ionized nuclei form a Coulomb crystal embedded in an electron gas. The main effects of the strong magnetic field are those of quantizing the electron motion in Landau levels and of modifying the nuclear single particle levels producing, on average, an increased binding of nucleons in nuclei present in the Coulomb lattice. The effect of an homogeneous and constant magnetic field on nuclear masses has been predicted by using a covariant density functional, in which induced currents and axial deformation due to the presence of a magnetic field that breaks time-reversal symmetry have been included self-consistently in the nucleon and meson equations of motion. Although not yet observed, for B1016B\gtrsim 10^{16}G both effects contribute to produce different compositions and to enlarge the range of pressures typically present in common neutron stars. Specifically, in such a regime, the magnetic field effects on nuclei favor the appearance of heavier nuclei at low pressures. As BB increases, such heavier nuclei are also preferred up to larger pressures. In the most extreme case, the whole outer crust is almost made of 4092{}_{40}^{92}Zr52_{52}.Comment: Published versio

    Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome.

    Get PDF
    Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs) for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development

    Desarrollo del conocimiento estadístico común y avanzado en estudiantes de magisterio

    Get PDF
    Analizamos los resultados de un proceso formativo de futuros profesores de educación primaria sobre estadística basado en la resolución de proyectos de análisis de datos. Se contempla la formación de los estudiantes sobre aspectos relevantes del conocimiento común del contenido:reducción de datos estadísticos(tablas,gráficos,promedios y dispersión)y algunos aspectos del conocimiento avanzado del contenido(comparación de distribuciones de frecuencias, valores atípicos). El análisis de uno de los proyectos realizados por los estudiantes revela las potencialidades de la metodología de enseñanza basada en proyecto para dar sentido a las técnicas de análisis de datos. Dicho análisis revela también aspectos conflictivos del aprendizaje que deben ser tenidos en cuenta en los momentos de institucionalización y ejercitación, como fases complementarias de los momentos de exploración favorecidos por la realización de los proyectos

    Report on Tests and Measurements of Hadronic Interaction Properties with Air Showers

    Full text link
    We present a summary of recent tests and measurements of hadronic interaction properties with air showers. This report has a special focus on muon density measurements. Several experiments reported deviations between simulated and recorded muon densities in extensive air showers, while others reported no discrepancies. We combine data from eight leading air shower experiments to cover shower energies from PeV to tens of EeV. Data are combined using the z-scale, a unified reference scale based on simulated air showers. Energy-scales of experiments are cross-calibrated. Above 10 PeV, we find a muon deficit in simulated air showers for each of the six considered hadronic interaction models. The deficit is increasing with shower energy. For the models EPOS-LHC and QGSJet-II.04, the slope is found significant at 8 sigma.Comment: Submitted to the Proceedings of UHECR201

    Confronting the trans-Planckian question of inflationary cosmology with dissipative effects

    Full text link
    We provide a class of QFTs which exhibit dissipation above a threshold energy, thereby breaking Lorentz invariance. Unitarity is preserved by coupling the fields to additional degrees of freedom (heavy fields) which introduce the rest frame. Using the Equivalence Principle, we define these theories in arbitrary curved spacetime. We then confront the trans-Planckian question of inflationary cosmology. When dissipation increases with the energy, the quantum field describing adiabatic perturbations is completely damped at the onset of inflation. However it still exists as a composite operator made with the additional fields. And when these are in their ground state, the standard power spectrum obtains if the threshold energy is much larger that the Hubble parameter. In fact, as the energy redshifts below the threshold, the composite operator behaves as if it were a free field endowed with standard vacuum fluctuations. The relationship between our models and the Brane World scenarios studied by Libanov and Rubakov displaying similar effects is discussed. The signatures of dissipation will be studied in a forthcoming paper.Comment: 30 pages, 1 Figure, to appear in CQ
    corecore