2,109 research outputs found

    Outer crust of a cold non-accreting magnetar

    Get PDF
    The outer crust structure and composition of a cold, non-accreting magnetar is studied. We model the outer crust to be made of fully equilibrated matter where ionized nuclei form a Coulomb crystal embedded in an electron gas. The main effects of the strong magnetic field are those of quantizing the electron motion in Landau levels and of modifying the nuclear single particle levels producing, on average, an increased binding of nucleons in nuclei present in the Coulomb lattice. The effect of an homogeneous and constant magnetic field on nuclear masses has been predicted by using a covariant density functional, in which induced currents and axial deformation due to the presence of a magnetic field that breaks time-reversal symmetry have been included self-consistently in the nucleon and meson equations of motion. Although not yet observed, for B≳1016B\gtrsim 10^{16}G both effects contribute to produce different compositions and to enlarge the range of pressures typically present in common neutron stars. Specifically, in such a regime, the magnetic field effects on nuclei favor the appearance of heavier nuclei at low pressures. As BB increases, such heavier nuclei are also preferred up to larger pressures. In the most extreme case, the whole outer crust is almost made of 4092{}_{40}^{92}Zr52_{52}.Comment: Published versio

    Description of nuclear systems with a self-consistent configuration-mixing approach. I: Theory, algorithm, and application to the 12^{12}C test nucleus

    Full text link
    Although self-consistent multi-configuration methods have been used for decades to address the description of atomic and molecular many-body systems, only a few trials have been made in the context of nuclear structure. This work aims at the development of such an approach to describe in a unified way various types of correlations in nuclei, in a self-consistent manner where the mean-field is improved as correlations are introduced. The goal is to reconcile the usually set apart Shell-Model and Self-Consistent Mean-Field methods. This approach is referred as "variational multiparticle-multihole configuration mixing method". It is based on a double variational principle which yields a set of two coupled equations that determine at the same time the expansion coefficients of the many-body wave function and the single particle states. The formalism is derived and discussed in a general context, starting from a three-body Hamiltonian. Links to existing many-body techniques such as the formalism of Green's functions are established. First applications are done using the two-body D1S Gogny effective force. The numerical procedure is tested on the 12^{12}C nucleus in order to study the convergence features of the algorithm in different contexts. Ground state properties as well as single-particle quantities are analyzed, and the description of the first 2+2^+ state is examined. This study allows to validate our numerical algorithm and leads to encouraging results. In order to test the method further, we will realize in the second article of this series, a systematic description of more nuclei and observables obtained by applying the newly-developed numerical procedure with the same Gogny force. As raised in the present work, applications of the variational multiparticle-multihole configuration mixing method will however ultimately require the use of an extended and more constrained Gogny force.Comment: 22 pages, 18 figures, accepted for publication in Phys. Rev. C. v2: minor corrections and references adde

    INITIAL INVESTIGATION OF A LOW-COST AUTOMOTIVE LIDAR SYSTEM

    Get PDF
    This investigation focuses on the performance assessment of a low-cost automotive LIDAR, the Livox Mid-40 series. The work aims to examine the qualities of the sensor in terms of ranging, repeatability and accuracy. Towards these aims a series of experiments were carried out based on previous research of low-cost sensor accuracy, LIDAR accuracy investigation and TLS calibration experiments. The Livox Mid-40 series offers the advantage of a long-range detection beyond 200 m at a remarkably low cost. The preliminary results of the tests for this sensor indicate that it can be used for reality capture purposes such as to obtain coarse as-built plans and volume calculations to mention a few. Close-range experiments were conducted in an indoor laboratory setting. Long-range experiments were performed outdoors towards a building façade. Reference values in both setups were provided with a Leica RTC 360 terrestrial LIDAR system. In the close-range experiments a cross section of the point cloud shows a significant level of noise in the acquired data. At a stand-off distance of 5 m the length measurement tests reveal deviations of up to 11 mm to the reference values. Range measurement was tested up to 130 meters and shows ranging deviations of up to 25 millimetres. The authors recommend further investigation of the issues in radiometric behaviour and material reflectivity. Also, more knowledge about the internal components is needed to understand the causes of the concentric ripple effect observed at close ranges. Another aspect that should be considered is the use of targets and their design as the non-standard scan pattern prevents automated detection with standard commercial software

    Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome.

    Get PDF
    Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs) for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development
    • …
    corecore