499 research outputs found

    Teleportation via thermally entangled state of a two-qubit Heisenberg XX chain

    Full text link
    We find that quantum teleportation, using the thermally entangled state of two-qubit Heisenberg XX chain as a resource, with fidelity better than any classical communication protocol is possible. However, a thermal state with a greater amount of thermal entanglement does not necessarily yield better fidelity. It depends on the amount of mixing between the separable state and maximally entangled state in the spectra of the two-qubit Heisenberg XX model.Comment: 5 pages, 1 tabl

    Quantum Entanglement in Fermionic Lattices

    Full text link
    The Fock space of a system of indistinguishable particles is isomorphic (in a non-unique way) to the state-space of a composite i.e., many-modes, quantum system. One can then discuss quantum entanglement for fermionic as well as bosonic systems. We exemplify the use of this notion -central in quantum information - by studying some e.g., Hubbard,lattice fermionic models relevant to condensed matter physics.Comment: 4 Pages LaTeX, 1 TeX Figure. Presentation improved, title changed. To appear in PR

    Entanglement and Spontaneous Symmetry Breaking in Quantum Spin Models

    Full text link
    It is shown that spontaneous symmetry breaking does not modify the ground-state entanglement of two spins, as defined by the concurrence, in the XXZ- and the transverse field Ising-chain. Correlation function inequalities, valid in any dimensions for these models, are presented outlining the regimes where entanglement is unaffected by spontaneous symmetry breaking

    Entanglement in the One-dimensional Kondo Necklace Model

    Get PDF
    We discuss the thermal and magnetic entanglement in the one-dimensional Kondo necklace model. Firstly, we show how the entanglement naturally present at zero temperature is distributed among pairs of spins according to the strength of the two couplings of the chain, namely, the Kondo exchange interaction and the hopping energy. The effect of the temperature and the presence of an external magnetic field is then investigated, being discussed the adjustment of these variables in order to control the entanglement available in the system. In particular, it is indicated the existence of a critical magnetic field above which the entanglement undergoes a sharp variation, leading the ground state to a completely unentangled phase.Comment: 8 pages, 13 EPS figures. v2: four references adde

    Thermal and ground-state entanglement in Heisenberg XX qubit rings

    Get PDF
    We study the entanglement of thermal and ground states in Heisernberg XXXX qubit rings with a magnetic field. A general result is found that for even-number rings pairwise entanglement between nearest-neighbor qubits is independent on both the sign of exchange interaction constants and the sign of magnetic fields. As an example we study the entanglement in the four-qubit model and find that the ground state of this model without magnetic fields is shown to be a four-body maximally entangled state measured by the NN-tangle.Comment: Four pages and one figure, small change

    Protein N-terminal acetylation: NAT 2007–2008 Symposia

    Get PDF
    Protein N-terminal acetylation is a very common modification, but has during the past decades received relatively little attention. In order to put this neglected field back on the scientific map, we have in May 2007 and September 2008 arranged two international NAT symposia in Bergen, Norway. This supplement contains selected proceedings from these symposia reflecting the current status of the field, including an overview of protein N-terminal acetylation in yeast and humans, a novel nomenclature system for the N-terminal acetyltransferases (NATs) and methods for studying protein N-terminal acetylation in vitro and in vivo

    'It's the other assessment that is the key': three Norwegian physical education teachers' engagement (or not) with assessment for learning

    Get PDF
    peer-reviewedThe international agenda for assessment continues to convey a growing interest in assessment for learning (AfL) as a tool to support learning and enhance teaching. Complementing this, the recent literature on assessment in physical education acknowledges the need for physical educators to integrate AfL into their teaching and assessment practice as an important part of the future development of the subject. Appreciating that physical education must be recognized as part of the larger movement culture in society and is a place to learn about movement culture, this study explores how AfL is understood and enacted by physical education teachers and the extent to which such enactment complements or challenges learning movement cultures within physical education. This study shares how three Norwegian physical education teachers used AfL to term what they were practicing with respect to assessment in physical education. We follow the interactions of the selected teachers throughout focus groups, using the empirical data as our 'dialogue partner' in reconstructing and discussing their assessment stories. We conclude that the need of embedding AfL in learning theory may well be one of the strongest challenges to enacting AfL in physical education. We acknowledge that not only are most existing theories of learning defined cognitively, but also that learning connected to physical education and activity is, to a large extent, practical and embodied, and also linked to the powerful discourses of sport and related areas such as health.PUBLISHEDpeer-reviewe

    NatF Contributes to an Evolutionary Shift in Protein N-Terminal Acetylation and Is Important for Normal Chromosome Segregation

    Get PDF
    N-terminal acetylation (N-Ac) is a highly abundant eukaryotic protein modification. Proteomics revealed a significant increase in the occurrence of N-Ac from lower to higher eukaryotes, but evidence explaining the underlying molecular mechanism(s) is currently lacking. We first analysed protein N-termini and their acetylation degrees, suggesting that evolution of substrates is not a major cause for the evolutionary shift in N-Ac. Further, we investigated the presence of putative N-terminal acetyltransferases (NATs) in higher eukaryotes. The purified recombinant human and Drosophila homologues of a novel NAT candidate was subjected to in vitro peptide library acetylation assays. This provided evidence for its NAT activity targeting Met-Lys- and other Met-starting protein N-termini, and the enzyme was termed Naa60p and its activity NatF. Its in vivo activity was investigated by ectopically expressing human Naa60p in yeast followed by N-terminal COFRADIC analyses. hNaa60p acetylated distinct Met-starting yeast protein N-termini and increased general acetylation levels, thereby altering yeast in vivo acetylation patterns towards those of higher eukaryotes. Further, its activity in human cells was verified by overexpression and knockdown of hNAA60 followed by N-terminal COFRADIC. NatF's cellular impact was demonstrated in Drosophila cells where NAA60 knockdown induced chromosomal segregation defects. In summary, our study revealed a novel major protein modifier contributing to the evolution of N-Ac, redundancy among NATs, and an essential regulator of normal chromosome segregation. With the characterization of NatF, the co-translational N-Ac machinery appears complete since all the major substrate groups in eukaryotes are accounted for

    Entanglement in quantum computers described by the XXZ model with defects

    Full text link
    We investigate how to generate maximally entangled states in systems characterized by the Hamiltonian of the XXZ model with defects. Some proposed quantum computers are described by such model. We show how the defects can be used to obtain EPR states and W states when one or two excitations are considered.Comment: 4 pages, 1 figur

    Global entanglement in multiparticle systems

    Get PDF
    We define a polynomial measure of multiparticle entanglement which is scalable, i.e., which applies to any number of spin-1/2 particles. By evaluating it for three particle states, for eigenstates of the one dimensional Heisenberg antiferromagnet and on quantum error correcting code subspaces, we illustrate the extent to which it quantifies global entanglement. We also apply it to track the evolution of entanglement during a quantum computation.Comment: 9 pages, plain TeX, 1 PostScript figure included with epsf.tex (ignore the under/overfull \vbox error messages); for related work see http://math.ucsd.edu/~dmeyer/research.html or http://www.math.ucsd.edu/~nwallach
    corecore