2,198 research outputs found
The relation between productivity and species diversity in temperate-arctic marine ecosystems
Energy variables, such as evapotranspiration, temperature, and productivity explain significant variation in the diversity of many groups of terrestrial plants and animals at local to global scales. Although the ocean represents the largest continuous habitat on earth with a vast spectrum of primary productivity and species richness, little is known about how productivity influences species diversity in marine systems. To search for general relationships between productivity and species richness in the ocean, we analyzed data from three different benthic marine ecosystems (epifaunal communities on subtidal rock walls, on navigation buoys in the Gulf of St. Lawrence, and Canadian Arctic macrobenthos) across local to continental spatial scales (1000 km) using a standardized proxy for productivity, satellite-derived chlorophyll a. Theoretically, the form of the function between productivity and species richness is either monotonically increasing or decreasing, or curvilinear (hump- or U-shaped). We found three negative linear and three hump-shaped relationships between chlorophyll a and species richness out of 10 independent comparisons. Scale dependence was suggested by more prevalent diversity-productivity relationships at smaller (local, landscape) than larger (regional, continental) spatial scales. Differences in the form of the functions were more closely allied with community type than with scale, as negative linear functions were restricted to sessile epifauna while hump-shaped functions occurred in Arctic macrobenthos (mixed epifauna, infauna). In two of the data sets, (St. Lawrence epifauna and Arctic macrobenthos) significant effects of chlorophyll a co-varied with the effects of salinity, suggesting that environmental stress as well as productivity influences diversity in these marine systems. The co-varying effect of salinity may commonly arise in broad-scale studies of productivity and diversity in marine ecosystems when attempting to sample the largest range of productivity, often encompassing a coastal-oceanic gradient
Electric Dipole Moments of Leptons in the Presence of Majorana Neutrinos
We calculate the two-loop diagrams that give a non-zero contribution to the
electric dipole moment d_l of a charged lepton l due to possible Majorana
masses of neutrinos. Using the example with one generation of the Standard
Model leptons and two heavy right-handed neutrinos, we demonstrate that the
non-vanishing result for d_l first appears in order O(m_l m_\nu^2 G_F^2), where
m_\nu is the mass of the light neutrino and the see-saw type relation is
imposed. This effect is beyond the reach of presently planned experiments.Comment: 13 page
Towards Scalable Visual Exploration of Very Large RDF Graphs
In this paper, we outline our work on developing a disk-based infrastructure
for efficient visualization and graph exploration operations over very large
graphs. The proposed platform, called graphVizdb, is based on a novel technique
for indexing and storing the graph. Particularly, the graph layout is indexed
with a spatial data structure, i.e., an R-tree, and stored in a database. In
runtime, user operations are translated into efficient spatial operations
(i.e., window queries) in the backend.Comment: 12th Extended Semantic Web Conference (ESWC 2015
Three-loop QCD corrections and b-quark decays
We present three-loop (NNNLO) corrections to the heavy-to-heavy quark
transitions in the limit of equal initial and final quark masses. In analogy
with the previously found NNLO corrections, the bulk of the result is due to
the beta_0^2 alpha_s^3 corrections. The remaining genuine three-loop effects
for the semileptonic b --> c decays are estimated to increase the decay
amplitude by 0.2(2)%. The perturbative series for the heavy-heavy axial current
converges very well.Comment: 5 page
Evaluation of two interaction techniques for visualization of dynamic graphs
Several techniques for visualization of dynamic graphs are based on different
spatial arrangements of a temporal sequence of node-link diagrams. Many studies
in the literature have investigated the importance of maintaining the user's
mental map across this temporal sequence, but usually each layout is considered
as a static graph drawing and the effect of user interaction is disregarded. We
conducted a task-based controlled experiment to assess the effectiveness of two
basic interaction techniques: the adjustment of the layout stability and the
highlighting of adjacent nodes and edges. We found that generally both
interaction techniques increase accuracy, sometimes at the cost of longer
completion times, and that the highlighting outclasses the stability adjustment
for many tasks except the most complex ones.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Hamiltonian Dynamics and the Phase Transition of the XY Model
A Hamiltonian dynamics is defined for the XY model by adding a kinetic energy
term. Thermodynamical properties (total energy, magnetization, vorticity)
derived from microcanonical simulations of this model are found to be in
agreement with canonical Monte-Carlo results in the explored temperature
region. The behavior of the magnetization and the energy as functions of the
temperature are thoroughly investigated, taking into account finite size
effects. By representing the spin field as a superposition of random phased
waves, we derive a nonlinear dispersion relation whose solutions allow the
computation of thermodynamical quantities, which agree quantitatively with
those obtained in numerical experiments, up to temperatures close to the
transition. At low temperatures the propagation of phonons is the dominant
phenomenon, while above the phase transition the system splits into ordered
domains separated by interfaces populated by topological defects. In the high
temperature phase, spins rotate, and an analogy with an Ising-like system can
be established, leading to a theoretical prediction of the critical temperature
.Comment: 10 figures, Revte
Quasi-long-range ordering in a finite-size 2D Heisenberg model
We analyse the low-temperature behaviour of the Heisenberg model on a
two-dimensional lattice of finite size. Presence of a residual magnetisation in
a finite-size system enables us to use the spin wave approximation, which is
known to give reliable results for the XY model at low temperatures T. For the
system considered, we find that the spin-spin correlation function decays as
1/r^eta(T) for large separations r bringing about presence of a
quasi-long-range ordering. We give analytic estimates for the exponent eta(T)
in different regimes and support our findings by Monte Carlo simulations of the
model on lattices of different sizes at different temperatures.Comment: 9 pages, 3 postscript figs, style files include
Relevance of soft modes for order parameter fluctuations in the Two-Dimensional XY model
We analyse the spin wave approximation for the 2D-XY model, directly in
reciprocal space. In this limit the model is diagonal and the normal modes are
statistically independent. Despite this simplicity non-trivial critical
properties are observed and exploited. We confirm that the observed asymmetry
for the probability density function for order parameter fluctuations comes
from the divergence of the mode amplitudes across the Brillouin zone. We show
that the asymmetry is a many body effect despite the importance played by the
zone centre. The precise form of the function is dependent on the details of
the Gibbs measure, giving weight to the idea that an effective Gibbs measure
should exist in non-equilibrium systems, if a similar distribution is observed.Comment: 12 pages, 9 figure
Directional detection as a strategy to discover Galactic Dark Matter
Directional detection of Galactic Dark Matter is a promising search strategy
for discriminating genuine WIMP events from background ones. Technical progress
on gaseous detectors and read-outs has permitted the design and construction of
competitive experiments. However, to take full advantage of this powerful
detection method, one need to be able to extract information from an observed
recoil map to identify a WIMP signal. We present a comprehensive formalism,
using a map-based likelihood method allowing to recover the main incoming
direction of the signal and its significance, thus proving its galactic origin.
This is a blind analysis intended to be used on any directional data.
Constraints are deduced in the () plane and systematic
studies are presented in order to show that, using this analysis tool,
unambiguous dark matter detection can be achieved on a large range of exposures
and background levels.Comment: 20 pages, 5 figures Final version to appear in Phys. Lett.
Temperature dependent fluctuations in the two-dimensional XY model
We present a detailed investigation of the probability density function (PDF)
of order parameter fluctuations in the finite two-dimensional XY (2dXY) model.
In the low temperature critical phase of this model, the PDF approaches a
universal non-Gaussian limit distribution in the limit T-->0. Our analysis
resolves the question of temperature dependence of the PDF in this regime, for
which conflicting results have been reported. We show analytically that a weak
temperature dependence results from the inclusion of multiple loop graphs in a
previously-derived graphical expansion. This is confirmed by numerical
simulations on two controlled approximations to the 2dXY model: the Harmonic
and ``Harmonic XY'' models. The Harmonic model has no
Kosterlitz-Thouless-Berezinskii (KTB) transition and the PDF becomes
progressively less skewed with increasing temperature until it closely
approximates a Gaussian function above T ~ 4\pi. Near to that temperature we
find some evidence of a phase transition, although our observations appear to
exclude a thermodynamic singularity.Comment: 15 pages, 5 figures and 1 tabl
- …
