4,845 research outputs found

    Dijet Production at Large Rapidity Separation in N=4 SYM

    Full text link
    Ratios of azimuthal angle correlations between two jets produced at large rapidity separation are studied in the N=4 super Yang-Mills theory (MSYM). It is shown that these observables, which directly prove the SL(2,C) symmetry present in gauge theories in the Regge limit, exhibit an excellent perturbative convergence. They are compared to those calculated in QCD for different renormalization schemes concluding that the momentum-substraction (MOM) scheme with the Brodsky-Lepage-Mackenzie (BLM) scale-fixing procedure captures the bulk of the MSYM results.Comment: 13 pages, 7 figure

    On the mutual effect of ion temperature gradient instabilities and impurity peaking in the reversed field pinch

    Full text link
    The presence of impurities is considered in gyrokinetic calculations of ion temperature gradient (ITG) instabilities and turbulence in the reversed field pinch device RFX-mod. This device usually exhibits hollow Carbon/Oxygen profiles, peaked in the outer core region. We describe the role of the impurities in ITG mode destabilization, and analyze whether ITG turbulence is compatible with their experimental gradients.Comment: 19 pages, 9 figures, accepted for publication in Plasma Phys. Control. Fusio

    Understanding the core density profile in TCV H-mode plasmas

    Full text link
    Results from a database analysis of H-mode electron density profiles on the Tokamak \`a Configuration Variable (TCV) in stationary conditions show that the logarithmic electron density gradient increases with collisionality. By contrast, usual observations of H-modes showed that the electron density profiles tend to flatten with increasing collisionality. In this work it is reinforced that the role of collisionality alone, depending on the parameter regime, can be rather weak and in these, dominantly electron heated TCV cases, the electron density gradient is tailored by the underlying turbulence regime, which is mostly determined by the ratio of the electron to ion temperature and that of their gradients. Additionally, mostly in ohmic plasmas, the Ware-pinch can significantly contribute to the density peaking. Qualitative agreement between the predicted density peaking by quasi-linear gyrokinetic simulations and the experimental results is found. Quantitative comparison would necessitate ion temperature measurements, which are lacking in the considered experimental dataset. However, the simulation results show that it is the combination of several effects that influences the density peaking in TCV H-mode plasmas.Comment: 23 pages, 12 figure

    Recent advances on innovative bioactive glass-hydroxyapatite composites for bone tissue applications: Processing, mechanical properties, and biological performance

    Get PDF
    New Hydroxyapatite-Bioactive Glass composites, xHA-(1-x)BG (x = 25, 50, and 75 wt %), are developed using HA and BGMS10 glass powders co-milled up to 2 h prior to Spark Plasma Sintering (SPS). Ball milling (BM) promoted the consolidation of HA-rich powders, whereas hindered the densification of 25HA-75BG samples. HA crystallite size is reduced from > 200 nm (unmilled) to 60 (x = 25 %) or 88 nm (x = 75 %) when using 2 h milled mixtures. Glass crystallization occurred in 75HA-25BG samples processed by SPS at 950 °C: a negligeable effect in the amount of the residual amorphous phase (12.3–13.3 wt %) is produced by BM, while changes are observed in the relative content of crystalline phases, with SiO2 increases from 8.5 to 13.1 wt %, whereas α- and β-CaSiO3 correspondingly decrease. Superior Young's modulus and Vickers hardness (130 GPa and 726, respectively) are obtained in HA rich products. Biological tests evidenced that the milling treatment does not determine negative consequences on cells viability

    Ulva as potential stimulant and attractant for a valuable sea urchin species: a chemosensory study

    Get PDF
    The green seaweed Ulva is close to becoming popular due to its suitability as potential feedstock production and for food items. However, there is a general lack of studies on the aversion or acceptability of this alga by marine organisms, particularly on its role as a chemoattractant and/or phagostimulant activity. Here we tested the effect of Ulva compressa and other biochemicals as potential chemostimulating compounds for a valuable sea urchin species, Paracentrotus lividus, selected as model species for our tests. Sea urchins’ chemical sensitivity was estimated by analysing movements of spines, pedicellariae, tube feet, and individual locomotion using an innovative bioassay. Our results showed that all forms of Ulva (fresh, defrosted, and fragmented) resulted in an effective stimulus, evoking in sea urchins strong responses with robust activation of spines and tube feet, where the defrosted one was the most stimulating. Among the amino acids tested, glycine, alanine, and glutamine produced a significant response, highlighting for the latter a concentration–response relationship. Sea urchins responded to glucose, not to fructose and sucrose. Spirulina resulted as the most effective stimulus, acting in a dose-dependent manner. Major results indicate the role of Ulva as a chemostimulant and strongly attractant for such herbivore species. From an applied point of view, the presence of potential Ulva’s feed-related compounds, acting as chemoattractants (to reduce food searching time) and/or feeding stimulants (to stimulate ingestion), would improve the several applications of Ulva in the formulation of the feeds for sustainable aquacultur

    ImageNet-Patch: A dataset for benchmarking machine learning robustness against adversarial patches

    Get PDF
    Adversarial patches are optimized contiguous pixel blocks in an input image that cause a machine-learning model to misclassify it. However, their optimization is computationally demanding, and requires careful hyperparameter tuning, potentially leading to suboptimal robustness evaluations. To overcome these issues, we propose ImageNet-Patch, a dataset to benchmark machine-learning models against adversarial patches. The dataset is built by first optimizing a set of adversarial patches against an ensemble of models, using a state-of-the-art attack that creates transferable patches. The corresponding patches are then randomly rotated and translated, and finally applied to the ImageNet data. We use ImageNet-Patch to benchmark the robustness of 127 models against patch attacks, and also validate the effectiveness of the given patches in the physical domain (i.e., by printing and applying them to real-world objects). We conclude by discussing how our dataset could be used as a benchmark for robustness, and how our methodology can be generalized to other domains. We open source our dataset and evaluation code at https://github.com/pralab/ImageNet-Patch

    Combustion synthesis and spark plasma sintering of apatite-tricalcium phosphate nanocomposites

    Get PDF
    A processing route consisting of Spark Plasma Sintering (SPS) of precursor powders prepared by Solution Combustion Synthesis (SCS) is proposed for the first time for the fabrication of bulk nanostructured biphasic calcium phosphates. The apatite phase content in the product obtained by SCS was maximized using a fuel to oxidizer ratio of 1.1. After a post-synthesis air-annealing step conducted a 700 °C/3 h, powders consisted of 83 wt.% of carbonated apatite, with average crystallite size less than 70 nm, and β- and α-TCP (tricalcium phosphate), as secondary phases. Detailed structural analyses evidenced that the original nanostructure was retained after sintering at 900 °C, with the obtainment of nearly 91% dense, apatite-rich, biphasic bioceramics, with grains size of about 100 nm. The developed nanostructured biphasic material is expected to possess a higher resorption rate than standard microcrystalline hydroxyapatite, which makes it preferable for bone tissue regeneration
    • …
    corecore