124 research outputs found
Exoplanet Research with the Stratospheric Observatory for Infrared Astronomy (SOFIA)
When the Stratospheric Observatory for Infrared Astronomy (SOFIA) was
conceived and its first science cases defined, exoplanets had not been
detected. Later studies, however, showed that optical and near-infrared
photometric and spectrophotometric follow-up observations during planetary
transits and eclipses are feasible with SOFIA's instrumentation, in particular
with the HIPO-FLITECAM and FPI+ optical and near infrared (NIR) instruments.
Additionally, the airborne-based platform SOFIA has a number of unique
advantages when compared to other ground- and space-based observatories in this
field of research. Here we will outline these theoretical advantages, present
some sample science cases and the results of two observations from SOFIA's
first five observation cycles -- an observation of the Hot Jupiter HD 189733b
with HIPO and an observation of the Super-Earth GJ 1214b with FLIPO and FPI+.
Based on these early products available to this science case, we evaluate
SOFIA's potential and future perspectives in the field of optical and infrared
exoplanet spectrophotometry in the stratosphere.Comment: Invited review chapter, accepted for publication in "Handbook of
Exoplanets" edited by H.J. Deeg and J.A. Belmonte, Springer Reference Work
EXONEST: The Bayesian Exoplanetary Explorer
The fields of astronomy and astrophysics are currently engaged in an
unprecedented era of discovery as recent missions have revealed thousands of
exoplanets orbiting other stars. While the Kepler Space Telescope mission has
enabled most of these exoplanets to be detected by identifying transiting
events, exoplanets often exhibit additional photometric effects that can be
used to improve the characterization of exoplanets. The EXONEST Exoplanetary
Explorer is a Bayesian exoplanet inference engine based on nested sampling and
originally designed to analyze archived Kepler Space Telescope and CoRoT
(Convection Rotation et Transits plan\'etaires) exoplanet mission data. We
discuss the EXONEST software package and describe how it accommodates
plug-and-play models of exoplanet-associated photometric effects for the
purpose of exoplanet detection, characterization and scientific hypothesis
testing. The current suite of models allows for both circular and eccentric
orbits in conjunction with photometric effects, such as the primary transit and
secondary eclipse, reflected light, thermal emissions, ellipsoidal variations,
Doppler beaming and superrotation. We discuss our new efforts to expand the
capabilities of the software to include more subtle photometric effects
involving reflected and refracted light. We discuss the EXONEST inference
engine design and introduce our plans to port the current MATLAB-based EXONEST
software package over to the next generation Exoplanetary Explorer, which will
be a Python-based open source project with the capability to employ third-party
plug-and-play models of exoplanet-related photometric effects.Comment: 30 pages, 8 figures, 5 tables. Presented at the 37th International
Workshop on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering (MaxEnt 2017) in Jarinu/SP Brasi
An astrobiological experiment to explore the habitability of tidally locked M-dwarf planets
We present a summary of a three-year academic research proposal drafted during the Sao Paulo Advanced School of Astrobiology (SPASA) to prepare for upcoming observations of tidally locked planets orbiting M-dwarf stars. The primary experimental goal of the suggested research is to expose extremophiles from analogue environments to a modified space simulation chamber reproducing the environmental parameters of a tidally locked planet in the habitable zone of a late-type star. Here we focus on a description of the astronomical analysis used to define the parameters for this climate simulation
Mapping Exoplanets
The varied surfaces and atmospheres of planets make them interesting places
to live, explore, and study from afar. Unfortunately, the great distance to
exoplanets makes it impossible to resolve their disk with current or near-term
technology. It is still possible, however, to deduce spatial inhomogeneities in
exoplanets provided that different regions are visible at different
times---this can be due to rotation, orbital motion, and occultations by a
star, planet, or moon. Astronomers have so far constructed maps of thermal
emission and albedo for short period giant planets. These maps constrain
atmospheric dynamics and cloud patterns in exotic atmospheres. In the future,
exo-cartography could yield surface maps of terrestrial planets, hinting at the
geophysical and geochemical processes that shape them.Comment: Updated chapter for Handbook of Exoplanets, eds. Deeg & Belmonte. 17
pages, including 6 figures and 4 pages of reference
An Unusual Transmission Spectrum for the Sub-Saturn KELT-11b Suggestive of a Sub-Solar Water Abundance
We present an optical-to-infrared transmission spectrum of the inflated
sub-Saturn KELT-11b measured with the Transiting Exoplanet Survey Satellite
(TESS), the Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectroscopic
grism, and the Spitzer Space Telescope (Spitzer) at 3.6 m, in addition to
a Spitzer 4.5 m secondary eclipse. The precise HST transmission spectrum
notably reveals a low-amplitude water feature with an unusual shape. Based on
free retrieval analyses with varying molecular abundances, we find strong
evidence for water absorption. Depending on model assumptions, we also find
tentative evidence for other absorbers (HCN, TiO, and AlO). The retrieved water
abundance is generally solar (0.001--0.7 solar
over a range of model assumptions), several orders of magnitude lower than
expected from planet formation models based on the solar system metallicity
trend. We also consider chemical equilibrium and self-consistent 1D
radiative-convective equilibrium model fits and find they too prefer low
metallicities (, consistent with the free retrieval
results). However, all the retrievals should be interpreted with some caution
since they either require additional absorbers that are far out of chemical
equilibrium to explain the shape of the spectrum or are simply poor fits to the
data. Finally, we find the Spitzer secondary eclipse is indicative of full heat
redistribution from KELT-11b's dayside to nightside, assuming a clear dayside.
These potentially unusual results for KELT-11b's composition are suggestive of
new challenges on the horizon for atmosphere and formation models in the face
of increasingly precise measurements of exoplanet spectra.Comment: Accepted to The Astronomical Journal. 31 pages, 20 figures, 7 table
Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program
The James Webb Space Telescope will revolutionize transiting exoplanet
atmospheric science due to its capability for continuous, long-duration
observations and its larger collecting area, spectral coverage, and spectral
resolution compared to existing space-based facilities. However, it is unclear
precisely how well JWST will perform and which of its myriad instruments and
observing modes will be best suited for transiting exoplanet studies. In this
article, we describe a prefatory JWST Early Release Science (ERS) program that
focuses on testing specific observing modes to quickly give the community the
data and experience it needs to plan more efficient and successful future
transiting exoplanet characterization programs. We propose a multi-pronged
approach wherein one aspect of the program focuses on observing transits of a
single target with all of the recommended observing modes to identify and
understand potential systematics, compare transmission spectra at overlapping
and neighboring wavelength regions, confirm throughputs, and determine overall
performances. In our search for transiting exoplanets that are well suited to
achieving these goals, we identify 12 objects (dubbed "community targets") that
meet our defined criteria. Currently, the most favorable target is WASP-62b
because of its large predicted signal size, relatively bright host star, and
location in JWST's continuous viewing zone. Since most of the community targets
do not have well-characterized atmospheres, we recommend initiating preparatory
observing programs to determine the presence of obscuring clouds/hazes within
their atmospheres. Measurable spectroscopic features are needed to establish
the optimal resolution and wavelength regions for exoplanet characterization.
Other initiatives from our proposed ERS program include testing the instrument
brightness limits and performing phase-curve observations.(Abridged)Comment: This is a white paper that originated from an open discussion at the
Enabling Transiting Exoplanet Science with JWST workshop held November 16 -
18, 2015 at STScI (http://www.stsci.edu/jwst/science/exoplanets). Accepted
for publication in PAS
Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations
It is possible to learn a great deal about exoplanet atmospheres even when we
cannot spatially resolve the planets from their host stars. In this chapter, we
overview the basic techniques used to characterize transiting exoplanets -
transmission spectroscopy, emission and reflection spectroscopy, and full-orbit
phase curve observations. We discuss practical considerations, including
current and future observing facilities and best practices for measuring
precise spectra. We also highlight major observational results on the
chemistry, climate, and cloud properties of exoplanets.Comment: Accepted review chapter; Handbook of Exoplanets, eds. Hans J. Deeg
and Juan Antonio Belmonte (Springer-Verlag). 22 pages, 6 figure
- …
