The fields of astronomy and astrophysics are currently engaged in an
unprecedented era of discovery as recent missions have revealed thousands of
exoplanets orbiting other stars. While the Kepler Space Telescope mission has
enabled most of these exoplanets to be detected by identifying transiting
events, exoplanets often exhibit additional photometric effects that can be
used to improve the characterization of exoplanets. The EXONEST Exoplanetary
Explorer is a Bayesian exoplanet inference engine based on nested sampling and
originally designed to analyze archived Kepler Space Telescope and CoRoT
(Convection Rotation et Transits plan\'etaires) exoplanet mission data. We
discuss the EXONEST software package and describe how it accommodates
plug-and-play models of exoplanet-associated photometric effects for the
purpose of exoplanet detection, characterization and scientific hypothesis
testing. The current suite of models allows for both circular and eccentric
orbits in conjunction with photometric effects, such as the primary transit and
secondary eclipse, reflected light, thermal emissions, ellipsoidal variations,
Doppler beaming and superrotation. We discuss our new efforts to expand the
capabilities of the software to include more subtle photometric effects
involving reflected and refracted light. We discuss the EXONEST inference
engine design and introduce our plans to port the current MATLAB-based EXONEST
software package over to the next generation Exoplanetary Explorer, which will
be a Python-based open source project with the capability to employ third-party
plug-and-play models of exoplanet-related photometric effects.Comment: 30 pages, 8 figures, 5 tables. Presented at the 37th International
Workshop on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering (MaxEnt 2017) in Jarinu/SP Brasi