3,913 research outputs found
Sympathetic cooling and collisional properties of a Rb-Cs mixture
We report on measurements of the collisional properties of a mixture of
Cs and Rb atoms in a magnetic trap at
temperatures. By selectively evaporating the Rb atoms using a radio-frequency
field, we achieved sympathetic cooling of Cs down to a few . The
inter-species collisional cross-section was determined through rethermalization
measurements, leading to an estimate of for the s-wave scattering
length for Rb in the and Cs in the magnetic
states. We briefly speculate on the prospects for reaching Bose-Einstein
condensation of Cs inside a magnetic trap through sympathetic cooling
Asymmetric Landau-Zener tunneling in a periodic potential
Using a simple model for nonlinear Landau-Zener tunneling between two energy
bands of a Bose-Einstein condensate in a periodic potential, we find that the
tunneling rates for the two directions of tunneling are not the same. Tunneling
from the ground state to the excited state is enhanced by the nonlinearity,
whereas in the opposite direction it is suppressed. These findings are
confirmed by numerical simulations of the condensate dynamics. Measuring the
tunneling rates for a condensate of rubidium atoms in an optical lattice, we
have found experimental evidence for this asymmetry.Comment: 5 pages, 3 figure
Preparation and detection of d-wave superfluidity in two-dimensional optical superlattices
We propose a controlled method to create and detect d-wave superfluidity with
ultracold fermionic atoms loaded in two-dimensional optical superlattices. Our
scheme consists in preparing an array of nearest-neighbor coupled square
plaquettes or ``superplaquettes'' and using them as building blocks to
construct a d-wave superfluid state. We describe how to use the coherent
dynamical evolution in such a system to experimentally probe the pairing
mechanism. We also derive the zero temperature phase diagram of the fermions in
a checkerboard lattice (many weakly coupled plaquettes) and show that by tuning
the inter-plaquette tunneling spin-dependently or varying the filling factor
one can drive the system into a d-wave superfluid phase or a Cooper pair
density wave phase. We discuss the use of noise correlation measurements to
experimentally probe these phases.Comment: 8 pages, 6 figure
Preparing and probing atomic number states with an atom interferometer
We describe the controlled loading and measurement of number-squeezed states
and Poisson states of atoms in individual sites of a double well optical
lattice. These states are input to an atom interferometer that is realized by
symmetrically splitting individual lattice sites into double wells, allowing
atoms in individual sites to evolve independently. The two paths then
interfere, creating a matter-wave double-slit diffraction pattern. The time
evolution of the double-slit diffraction pattern is used to measure the number
statistics of the input state. The flexibility of our double well lattice
provides a means to detect the presence of empty lattice sites, an important
and so far unmeasured factor in determining the purity of a Mott state
Optimal control of atom transport for quantum gates in optical lattices
By means of optimal control techniques we model and optimize the manipulation
of the external quantum state (center-of-mass motion) of atoms trapped in
adjustable optical potentials. We consider in detail the cases of both non
interacting and interacting atoms moving between neighboring sites in a lattice
of a double-well optical potentials. Such a lattice can perform
interaction-mediated entanglement of atom pairs and can realize two-qubit
quantum gates. The optimized control sequences for the optical potential allow
transport faster and with significantly larger fidelity than is possible with
processes based on adiabatic transport.Comment: revised version: minor changes, 2 references added, published versio
The novel CXCR4 antagonist POL5551 mobilizes hematopoietic stem and progenitor cells with greater efficiency than Plerixafor
Mobilized blood has supplanted bone marrow (BM) as the primary source of hematopoietic stem cells for autologous and allogeneic stem cell transplantation. Pharmacologically enforced egress of hematopoietic stem cells from BM, or mobilization, has been achieved by directly or indirectly targeting the CXCL12/CXCR4 axis. Shortcomings of the standard mobilizing agent, granulocyte colony-stimulating factor (G-CSF), administered alone or in combination with the only approved CXCR4 antagonist, Plerixafor, continue to fuel the quest for new mobilizing agents. Using Protein Epitope Mimetics technology, a novel peptidic CXCR4 antagonist, POL5551, was developed. In vitro data presented herein indicate high affinity to and specificity for CXCR4. POL5551 exhibited rapid mobilization kinetics and unprecedented efficiency in C57BL/6 mice, exceeding that of Plerixafor and at higher doses also of G-CSF. POL5551-mobilized stem cells demonstrated adequate transplantation properties. In contrast to G-CSF, POL5551 did not induce major morphological changes in the BM of mice. Moreover, we provide evidence of direct POL5551 binding to hematopoietic stem and progenitor cells (HSPCs) in vivo, strengthening the hypothesis that CXCR4 antagonists mediate mobilization by direct targeting of HSPCs. In summary, POL5551 is a potent mobilizing agent for HSPCs in mice with promising therapeutic potential if these data can be orroborated in humans
A new method based on noise counting to monitor the frontend electronics of the LHCb muon detector
A new method has been developed to check the correct behaviour of the
frontend electronics of the LHCb muon detector. This method is based on the
measurement of the electronic noise rate at different thresholds of the
frontend discriminator. The method was used to choose the optimal discriminator
thresholds. A procedure based on this method was implemented in the detector
control system and allowed the detection of a small percentage of frontend
channels which had deteriorated. A Monte Carlo simulation has been performed to
check the validity of the method
Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy)
Analyzing the displacement time series from continuous GPS (cGPS) with an Independent Component Analysis, we detect a transient deformation signal that correlates both in space and time with a seismic swarm activity (maximum M_w=3.69 ± 0.09) occurred in the hanging wall of the Altotiberina normal fault (Northern Apennines, Italy) in 2013–2014. The geodetic transient lasted ∼6 months and produced a NW-SE trending extension of ∼5.3 mm, consistent with the regional tectonic regime. The seismicity and the geodetic signal are consistent with slip on two splay faults in the Altotiberina fault (ATF) hanging wall. Comparing the seismic moment associated with the geodetic transient and the seismic events, we observe that seismicity accounts for only a fraction of the measured geodetic deformation. The combined seismic and aseismic slip decreased the Coulomb stress on the locked shallow portion of the ATF, while the transition region to the creeping section has been loaded
Nonlinear Dynamics in Double Square Well Potential
Considering the coherent nonlinear dynamics in double square well potential
we find the example of coexistence of Josephson oscillations with a
self-trapping regime. This macroscopic bistability is explained by proving
analytically the simultaneous existence of symmetric, antisymmetric and
asymmetric stationary solutions of the associated Gross-Pitaevskii equation.
The effect is illustrated and confirmed by numerical simulations. This property
allows to make suggestions on possible experiments using Bose-Einstein
condensates in engineered optical lattices or weakly coupled optical waveguide
arrays
Atomic micromotion and geometric forces in a triaxial magnetic trap
Non-adiabatic motion of Bose-Einstein condensates of rubidium atoms arising
from the dynamical nature of a time-orbiting-potential (TOP) trap was observed
experimentally. The orbital micromotion of the condensate in velocity space at
the frequency of the rotating bias field of the TOP was detected by a
time-of-flight method. A dependence of the equilibrium position of the atoms on
the sense of rotation of the bias field was observed. We have compared our
experimental findings with numerical simulations. The nonadiabatic following of
the atomic spin in the trap rotating magnetic field produces geometric forces
acting on the trapped atoms.Comment: 4 pages, 4 figure
- …
