Non-adiabatic motion of Bose-Einstein condensates of rubidium atoms arising
from the dynamical nature of a time-orbiting-potential (TOP) trap was observed
experimentally. The orbital micromotion of the condensate in velocity space at
the frequency of the rotating bias field of the TOP was detected by a
time-of-flight method. A dependence of the equilibrium position of the atoms on
the sense of rotation of the bias field was observed. We have compared our
experimental findings with numerical simulations. The nonadiabatic following of
the atomic spin in the trap rotating magnetic field produces geometric forces
acting on the trapped atoms.Comment: 4 pages, 4 figure