2,082 research outputs found

    The Cauchy problems for Einstein metrics and parallel spinors

    Full text link
    We show that in the analytic category, given a Riemannian metric gg on a hypersurface MZM\subset \Z and a symmetric tensor WW on MM, the metric gg can be locally extended to a Riemannian Einstein metric on ZZ with second fundamental form WW, provided that gg and WW satisfy the constraints on MM imposed by the contracted Codazzi equations. We use this fact to study the Cauchy problem for metrics with parallel spinors in the real analytic category and give an affirmative answer to a question raised in B\"ar, Gauduchon, Moroianu (2005). We also answer negatively the corresponding questions in the smooth category.Comment: 28 pages; final versio

    The Dirac operator on generalized Taub-NUT spaces

    Full text link
    We find sufficient conditions for the absence of harmonic L2L^2 spinors on spin manifolds constructed as cone bundles over a compact K\"ahler base. These conditions are fulfilled for certain perturbations of the Euclidean metric, and also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a conjecture of Vi\csinescu and the second author.Comment: Final version, 16 page

    Experimental evidence for the role of cantori as barriers in a quantum system

    Full text link
    We investigate the effect of cantori on momentum diffusion in a quantum system. Ultracold caesium atoms are subjected to a specifically designed periodically pulsed standing wave. A cantorus separates two chaotic regions of the classical phase space. Diffusion through the cantorus is classically predicted. Quantum diffusion is only significant when the classical phase-space area escaping through the cantorus per period greatly exceeds Planck's constant. Experimental data and a quantum analysis confirm that the cantori act as barriers.Comment: 19 pages including 9 figures, Accepted for publication in Physical Review E in March 199

    Regularity for eigenfunctions of Schr\"odinger operators

    Full text link
    We prove a regularity result in weighted Sobolev spaces (or Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator. More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space obtained by blowing up the set of singular points of the Coulomb type potential V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0. Our result extends to the case when b_j and c_{ij} are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a<3/2.Comment: to appear in Lett. Math. Phy

    Quantum and classical chaos for a single trapped ion

    Get PDF
    In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Guassian laser pulses. We show that the classical system exhibits diffusive growth in the energy, or 'heating', while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focussed laser pulses into the trap.Comment: 8 pages, REVTEX, 8 figure

    A study of quantum decoherence in a system with Kolmogorov-Arnol'd-Moser tori

    Get PDF
    We present an experimental and numerical study of the effects of decoherence on a quantum system whose classical analogue has Kolmogorov-Arnol'd-Moser (KAM) tori in its phase space. Atoms are prepared in a caesium magneto-optical trap at temperatures and densities which necessitate a quantum description. This real quantum system is coupled to the environment via spontaneous emission. The degree of coupling is varied and the effects of this coupling on the quantum coherence of the system are studied. When the classical diffusion through a partially broken torus is < hbar, diffusion of quantum particles is inhibited. We find that increasing decoherence via spontaneous emission increases the transport of quantum particles through the boundary.Comment: 19 pages including 6 figure

    An accelerator mode based technique for studying quantum chaos

    Get PDF
    We experimentally demonstrate a method for selecting small regions of phase space for kicked rotor quantum chaos experiments with cold atoms. Our technique uses quantum accelerator modes to selectively accelerate atomic wavepackets with localized spatial and momentum distributions. The potential used to create the accelerator mode and subsequently realize the kicked rotor system is formed by a set of off-resonant standing wave light pulses. We also propose a method for testing whether a selected region of phase space exhibits chaotic or regular behavior using a Ramsey type separated field experiment.Comment: 5 pages, 3 figures, some modest revisions to previous version (esp. to the figures) to aid clarity; accepted for publication in Physical Review A (due out on January 1st 2003

    A spinorial energy functional: critical points and gradient flow

    Full text link
    On the universal bundle of unit spinors we study a natural energy functional whose critical points, if dim M \geq 3, are precisely the pairs (g, {\phi}) consisting of a Ricci-flat Riemannian metric g together with a parallel g-spinor {\phi}. We investigate the basic properties of this functional and study its negative gradient flow, the so-called spinor flow. In particular, we prove short-time existence and uniqueness for this flow.Comment: Small changes, final versio
    corecore