2,082 research outputs found
The Cauchy problems for Einstein metrics and parallel spinors
We show that in the analytic category, given a Riemannian metric on a
hypersurface and a symmetric tensor on , the metric
can be locally extended to a Riemannian Einstein metric on with second
fundamental form , provided that and satisfy the constraints on
imposed by the contracted Codazzi equations. We use this fact to study the
Cauchy problem for metrics with parallel spinors in the real analytic category
and give an affirmative answer to a question raised in B\"ar, Gauduchon,
Moroianu (2005). We also answer negatively the corresponding questions in the
smooth category.Comment: 28 pages; final versio
The Dirac operator on generalized Taub-NUT spaces
We find sufficient conditions for the absence of harmonic spinors on
spin manifolds constructed as cone bundles over a compact K\"ahler base. These
conditions are fulfilled for certain perturbations of the Euclidean metric, and
also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a
conjecture of Vi\csinescu and the second author.Comment: Final version, 16 page
Experimental evidence for the role of cantori as barriers in a quantum system
We investigate the effect of cantori on momentum diffusion in a quantum
system. Ultracold caesium atoms are subjected to a specifically designed
periodically pulsed standing wave. A cantorus separates two chaotic regions of
the classical phase space. Diffusion through the cantorus is classically
predicted. Quantum diffusion is only significant when the classical phase-space
area escaping through the cantorus per period greatly exceeds Planck's
constant. Experimental data and a quantum analysis confirm that the cantori act
as barriers.Comment: 19 pages including 9 figures, Accepted for publication in Physical
Review E in March 199
Regularity for eigenfunctions of Schr\"odinger operators
We prove a regularity result in weighted Sobolev spaces (or
Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator.
More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space
obtained by blowing up the set of singular points of the Coulomb type potential
V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N}
\frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u
in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution
sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0.
Our result extends to the case when b_j and c_{ij} are suitable bounded
functions on the blown-up space. In the single-electron, multi-nuclei case, we
obtain the same result for all a<3/2.Comment: to appear in Lett. Math. Phy
Quantum and classical chaos for a single trapped ion
In this paper we investigate the quantum and classical dynamics of a single
trapped ion subject to nonlinear kicks derived from a periodic sequence of
Guassian laser pulses. We show that the classical system exhibits diffusive
growth in the energy, or 'heating', while quantum mechanics suppresses this
heating. This system may be realized in current single trapped-ion experiments
with the addition of near-field optics to introduce tightly focussed laser
pulses into the trap.Comment: 8 pages, REVTEX, 8 figure
A study of quantum decoherence in a system with Kolmogorov-Arnol'd-Moser tori
We present an experimental and numerical study of the effects of decoherence
on a quantum system whose classical analogue has Kolmogorov-Arnol'd-Moser (KAM)
tori in its phase space. Atoms are prepared in a caesium magneto-optical trap
at temperatures and densities which necessitate a quantum description. This
real quantum system is coupled to the environment via spontaneous emission. The
degree of coupling is varied and the effects of this coupling on the quantum
coherence of the system are studied. When the classical diffusion through a
partially broken torus is < hbar, diffusion of quantum particles is inhibited.
We find that increasing decoherence via spontaneous emission increases the
transport of quantum particles through the boundary.Comment: 19 pages including 6 figure
An accelerator mode based technique for studying quantum chaos
We experimentally demonstrate a method for selecting small regions of phase
space for kicked rotor quantum chaos experiments with cold atoms. Our technique
uses quantum accelerator modes to selectively accelerate atomic wavepackets
with localized spatial and momentum distributions. The potential used to create
the accelerator mode and subsequently realize the kicked rotor system is formed
by a set of off-resonant standing wave light pulses. We also propose a method
for testing whether a selected region of phase space exhibits chaotic or
regular behavior using a Ramsey type separated field experiment.Comment: 5 pages, 3 figures, some modest revisions to previous version (esp.
to the figures) to aid clarity; accepted for publication in Physical Review A
(due out on January 1st 2003
Thermochromatographic Investigation of 13N Labelled Nitrous Gases and of Fission Noble Gases at Low Temperatures
A spinorial energy functional: critical points and gradient flow
On the universal bundle of unit spinors we study a natural energy functional
whose critical points, if dim M \geq 3, are precisely the pairs (g, {\phi})
consisting of a Ricci-flat Riemannian metric g together with a parallel
g-spinor {\phi}. We investigate the basic properties of this functional and
study its negative gradient flow, the so-called spinor flow. In particular, we
prove short-time existence and uniqueness for this flow.Comment: Small changes, final versio
- …
