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Quantum and classical chaos for a single trapped ion
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In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear
kicks derived from a periodic sequence of Gaussian laser pulses. We show that the classical system exhibits
diffusive growth in the energy, or “heating,” while quantum mechanics suppresses this heating. This system
may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce
tightly focused laser pulses into the trap.

PACS numbes): 32.80.Lg, 05.45.Mt, 47.52;]

[. INTRODUCTION the problem and in Sec. IV show that this system exhibits a
suppression in the diffusion of momentum and position. In
Recent experiments on the nonlinear dynamics of coldther words the total energy of the trapped ion is localized in
trapped atoms have provided a remarkable verification o¢ontrast to classical diffusive heating of the motion. Finally
key theoretical ideas in the subject of quantum chdog)], in Sec. V we discuss a possible physical realization of the
including dynamical localization and the effect of decoher-System.
ence in restabilizing the classical limit. In all these experi-
ments, however, the observed results are obtained from a Il. CLASSICAL MAP
large ensemble of single atom experiments which run in par-

allel but independently. Until now, there have been no ex- The system has the Hamiltonian

periments which investigate quantum chaos airagle par- ~5 2 o

. . . L . _ P mQ-. =2 ~

ticle monitored over a period of time. In contrast, in the A=—+—x%+xke T >, &(t—nT),
related field of ion trapping, technological advances now en- 2m 2 n=—c

able a single ion to be trapped, cooled to the ground state of . . . .
the trap, and monitored, almost without erf8}. The quan- vyherem is the mass of Fhe ‘on tre_lpped Ina harmonlc poten-
tum dynamics of the center of mass motion of the ion istial of frequency(). The ion is subject~t20aper|0d|c sequence
extremely well described by a three-dimensional harmoni®f laser pulses with period. The xe™ ** term in the Hamil-
potential. In some experiments, two degrees of freedom ar@nian describes the potential felt by the ion due to the
very tightly bound and the interesting harmonic motion takegGaussian structure of the laser. If we rescale time, position
place in a single degree of freedom. Of course this system isnd momentum by lettingt =tT, x=(1/J/a)x, and p
integrable. However, if this degree of freedom is subject to a:(mQ/\/E)p the Hamiltonian rescales to
periodic nonlinear potential, chaos may result. In this paper
we investigate the quantum and classical dynamics of a
single trapped ion subject to nonlinear kicks derived from a
periodic sequence of Gaussian laser pulses. This system may
be realized in current single trapped-ion experiments with
the addition of near-field optics to introduce tightly focussed
laser pulses into the trap. Another suggestion for investigat-
ing quantum chaos in a single trapped ion has recently beephere w=QT and k= kaT/mQ are dimensionless param-
suggested by Bermeet al. [4]. eters. The new variables p, andt together with the Hamil-
The recently achieved ability to engineer dynamics for aionianH are also dimensionless.
single trapped ion has followed from the potential applica- Between kicks the system has the solutiom,p)
tion of this system for quantum computational gates. As sUCh= (x, coswt+ py Sinwt,—X, Sinwt+py coswt). The effect of
these systems necessarily operate at the quantum level apsk kick is to add a position dependent shift in the momen-
provide the ideal experimental context to test quantum NONG M of 2kxe . Denoting the mapping b we can write it

linear dynamics. Indeed such experiments will ultimately in'as the composition of a kick and a linear rotationV
volve the ability to follow the quantum dynamics of many

trapped ions with complex many-body interactions intro- F=WeK,
duced by externally imposed time dependent Hamiltonians.
We thus believe it timely to consider tests of quantum chaosvhere
which can be made with current technology. )
In Sec. Il we define the classical dynamical system and K(x,p)=(x,p+2kxe ),
give a detailed analysis of the classical motion and the tran-
sition to chaos. In Sec. Ill we give a quantum description of W(X,p)=(XcoSw+pSinw,—XSinw+ p CoOSw).

al - -~ -
H(X,D,I)ZMH(X,D,I)

:g(p2+x2)+ke”22 o(t—n), (D)

n=-—w
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FIG. 1. Bifurcation diagram for the period 4
orbits (2). The stable region is in dark and the
unstable in light.
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HenceF maps &,p) from just before a kick to one period These are stable for k tan(w/2) < exd ised(w/2)].

later. _ One can also find two sets of period 4 orbits which exist
The fixed points of are at for —ktanw>1. The first set is at

+~/In| kcote |, T tane/In k cot
+ n C0t5,+tan§ n COtE

The Origin is stable ifk Cot(w/2)<1 and —ktan(w/2)< 1. where = In(—ktanw). They are stable if—ktanw
Whenk cot(w/2)>1 it becomes unstable via a pitchfork bi- - 1 A d lie in b h bi
furcation which creates the second two fixed points. explsecw|). A second set lie in between these orbits at

These are stable fok cot(w/2)<ex{d3csé(w/2)]. When
—ktan(w/2)>1 the origin becomes unstable via a period
doubling bifurcation and two period 2 orbits are created at These are always unstable.

It is instructive to study the process of creation and de-

/ @), 0 w struction of these period 4 orbits in more detail. In Fig. 1 we
=| + — —
(Xp) {_ In( ktanz ' COtE In( ktanE ‘ have drawn a bifurcation diagram. The period 4 orbits exist

(O]

2

(x,p)=(0,0,

. (x,p)=(ix,txcot§), *x, * xtanz|, (2

(X,p)=(%x,* x cotw),(0,= y cSCcw).

FIG. 2. Phase portrait fok=2 and /27
=0.24.

=10 -8 -6 -4 -2 0 2 4 6 8 10

013401-2



QUANTUM AND CLASSICAL CHAOS FOR A SINGIE . .. PHYSICAL REVIEW A 61 013401

10

FIG. 3. As for Fig. 2 except/27=0.248.
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for parameter values lying in the shaded regions. The regions It is simple to see how the period 4 orbits were created at
of lighter shade show where the first set of orki@® are infinity when w=2x/4. The kick has little influence on or-
unstable. In Figs. 2 —6 a sequence of phase space pictures dies here and thu§ reduces to simple linear rotation with
drawn for values ofw along the linek=2. Figure 2 is for  period 4. In general, it can be shown that an orbit of pepod
w/27=0.24 and shows typical phase space structure for this created at infinity when

system. Asw is increased, the arms of the star-shaped cha-

otic region grow in size. This can be seen in Fig. 3 where 2mq

w/27m=0.248. Atw/27=% (Fig. 4 these arms are infinitely P

long chaotic channels which divide the phase space into four

regions, creating the period 4 orbits at infinity. Figure 5and then destroyed at the origin when

shows the period 4 orbits just after they are create®{

=0.252). They now move towards the origin asis in- . 2mq

creased further. On this journey the first $2t shed their COSaH—kSIna):COST,

stability via a pitchfork bifurcation but then regain it before

destroying at the origin. Figure 6 shows the orbits just beforavhereq andp are natural numbers with a greatest common
destruction (/27=0.42). divisor of one. The condition for destruction is found by

FIG. 4. As for Fig. 2 excepb/2m=%.
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FIG. 5. As for Fig. 2 except/27=0.252.
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looking at the eigenvalues of the tangent map at the origin L ir1
and then equating this linear rotation with the period of the |#"" %)= eXP( K J dt) ") 3
orbit.
IIl. QUANTUM MAP —exp( ﬂk (p2+x )) p(k'kexz)w,n)
To construct the quantum map we start with the rescaled (4)
Hamiltonian (1) and define a dimensionless Planck’s con-
stantk via the commutation relation for position and mo- EIEM”) (5)
mentum '
@ ok Hence the Floquet operato, defines the quantum map.
[x,p]= F[X’p]:i ink. Now, defining the annihilation and creation operators to be
w w
. : P : 1
The time evolution of an initial stat¢y"), from just before a= ——(x+i and af=——(x—i
a kick through to one period later is given by \/Zk( P) \/Zk( P,

10 T T B T T T T T T T T

FIG. 6. As for Fig. 2 excepw/27=0.42.
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e 0 FIG. 7. Phase portrait fok=8 andw= (3
—\5).
-5
-10
—15f
-20
-20
respectively, and using the simple harmonic oscillator eigen- IV. LOCALIZATION
states We now show numerically the presence of dynamical lo-
1 calisation5] in the system. Or, more precisely, we show that
Iny=—=a™0), n=01.2... classical diffusion is suppressed when the system is evolved
Jnt guantum mechanically. For this, we have chosen (3

—+/5) andk=8. In this parameter regime a large chaotic sea
centred at the origin consumes the phase sfsee Fig. 7.
The initial state was chosen to b@), which has a Husimi
probability density of

as an orthogonal basis we can rewrite Eg).as

n+1__ n
Cm - kack1

n_ n o2
wherecp,=(m| ") and (z]0Y| 2= 6)

Fom=(n|F|m)=e i+ 1’2)(n|ex%_lke"2)|m>. in phase space. Here=(1/\2k)(x+ip) and |z) are the

k coherent states defined as
The last term is found by taking the exponential of the matrix 20
with components 1z)=e W24*Y —_|n).
n=0 \/n!

- 2

- us our initial state is a hi ocalized Gaussian hum
<n|kex|m) Th initial is a highly localized G ian hump

centered at the origin. This was then evolved forward using

—ik o X X 1800 of the even basis2 stages. Figure 8 shows the average
= H, —=|Hnl —= dimensionless energyx“+ p), after each kick. The light
k32 nimi2n ) e Tk vk gray is for k=0.5 and the 3ark gray is fok=0.2. The
o~ (L LKy energy under classical evolution is shown in black. Here an
initial density (6) with k=0.2 was chosen. One can clearly
—Kk(n+m-1)(n+m=3)---1( —k |(+m+1)2 see in this figure that diffusion is suppressed after about 100
= kicks. The procedure was repeated using only 1000 even
k32 nim! 1+k

basis states to confirm accuracy and it was found that the

1-n—-m 1 1 difference in the energies did not exceed iuntil after

-n,-m--— ( + ” 1000 kicks. Thus the localization is truly a property of quan-
2 2 k tum mechanics.

X oFq

for n+m even and vanishing otherwise. Hetk, are Her- V. DISCUSSION AND CONCLUSION
mite polynomials and,F, is the hypergeometric function. : U U

Note thatF,,=0 whenevem+m is odd. This means that  what are the physical requirements to realize this system
even and odd parity states do not couple urileand thus in current ion trap experiments? ConsidetBe" ion such as
evolve independently. used in the NIST experiments3], with a harmonic fre-

013401-5



A. J. SCOTT, C. A. HOLMES, AND G. J. MILBURN PHYSICAL REVIEW A1 013401

140 T T T T T T T T T

120 &

sor FIG. 8. The average dimensionless energy af-

f r ter each kick for the initial staté0) with k
|v

(x2+p?)

| =0.5 (light gray), k=0.2 (dark gray, and clas-
sical evolution(black).
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quency in the relevant direction 6I=1 MHz. The key pa- Sible to monitor the energy of the motion as a function of
rameter which determines the effective Planck constant is thkick number. Dynamical localization of the motion energy of
parametera. If one uses a focused laser beam, a typicalthe ion could thus be observed.

value for this parameter is 1m? and a resulting effective Finally we need to ask if it is feasible to prepare the initial
Planck’s constant ok=6.7x 10 °, which is hopelessly too states we have used in this paper. Again R&f.shows that
small. On the other hand, if we use a near-field probe, ag is possible to prepare the ion in the ground state of the
used in near-field optical scanning microscdpOSM), to  harmonic trap, so this part is relatively easy. Laser pulses
inject the field we can get a value as high @as 10 m? may then be used to displace this minimum uncertainty state
with a typical probe tip of diameter 10 nm. This correspondsanywhere in the phase plane. This ability to place a localized
to an effective Planck’s constant fotBe™ of about k state anywhere in the phase plane would enable a detailed
=0.7, which is more promising. To achieve a value for thestudy of mixed chaotic and regular phase space structures.
kick parameter of the order used above we would need t&nfortunately in the current experiment unwanted stray lin-
focus a few nanowatts into the NOSM probe which is quiteear potentials cause a heating of the ion and thus it does not
typical. This would correspond to an intensity of aboutstay in the ground state for long, but rather undergoes a
1000 mW cm ? at the ion. If we choose the kick period to diffusive motion in the phase plaé,7]. A very consider-

be of the order of 10 ms, the kick paramekdras a value of able amount of effort is currently being devoted to removing
the order of unity. We conclude that this experiment is posthis unwanted heating so that trapped ions can be used in a
sible for a current single trapped-ion experiment with thequantum logic gate. We thus expect this problem to be
addition of near-field optical fibre probes. solved or at least significantly mitigated.

The next question we need to ask of such a system is how Needless to say this is not an easy experiment. Introduc-
are we to observe the motion of the ion? Fortunately théng the near field probe close to the ion will cause additional
current single trapped-ion experiments are designed preinwanted van der Walls forces to be exerted on the ion.
cisely to enable careful monitoring of the motion states. TheéHowever, these forces, while making a detailed comparison
details are described in R¢B]. The basic idea is to map the to experiment more difficult, will not effect the generic tran-
motion states onto particular internal states of the ion whiclsition to chaos described above so long as they remain weak.
are then probed by a fluorescent shelving technique. In paifhe heating of the ion due to stray linear potentials will
ticular, it is possible to measure the center-of-mass energy gEmain a problem to some extent. Such fluctuating forces are
the ion in the trap. Each measurement however destroys thesource of decoherence and thus will tend to destroy local-
qguantum state of the ion at that time, so repreparation of thezation. Taking a longer view, however, the ease with which
ion initial state is required. One then needs to perform redecoherence can be induced via this mechanism should en-
peated experiments for differing number of kicks beforeable a detailed study of the effect of noise on dynamical
reading out the center-of-mass energy. In this way it is poslocalization to be made, thus turning a bug into a feature.
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