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Quantum and classical chaos for a single trapped ion
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In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear
kicks derived from a periodic sequence of Gaussian laser pulses. We show that the classical system exhibits
diffusive growth in the energy, or ‘‘heating,’’ while quantum mechanics suppresses this heating. This system
may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce
tightly focused laser pulses into the trap.

PACS number~s!: 32.80.Lg, 05.45.Mt, 47.52.1j
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I. INTRODUCTION

Recent experiments on the nonlinear dynamics of c
trapped atoms have provided a remarkable verification
key theoretical ideas in the subject of quantum chaos@1,2#,
including dynamical localization and the effect of decoh
ence in restabilizing the classical limit. In all these expe
ments, however, the observed results are obtained fro
large ensemble of single atom experiments which run in p
allel but independently. Until now, there have been no
periments which investigate quantum chaos of asinglepar-
ticle monitored over a period of time. In contrast, in t
related field of ion trapping, technological advances now
able a single ion to be trapped, cooled to the ground stat
the trap, and monitored, almost without error@3#. The quan-
tum dynamics of the center of mass motion of the ion
extremely well described by a three-dimensional harmo
potential. In some experiments, two degrees of freedom
very tightly bound and the interesting harmonic motion tak
place in a single degree of freedom. Of course this syste
integrable. However, if this degree of freedom is subject t
periodic nonlinear potential, chaos may result. In this pa
we investigate the quantum and classical dynamics o
single trapped ion subject to nonlinear kicks derived from
periodic sequence of Gaussian laser pulses. This system
be realized in current single trapped-ion experiments w
the addition of near-field optics to introduce tightly focuss
laser pulses into the trap. Another suggestion for investig
ing quantum chaos in a single trapped ion has recently b
suggested by Bermanet al. @4#.

The recently achieved ability to engineer dynamics fo
single trapped ion has followed from the potential applic
tion of this system for quantum computational gates. As s
these systems necessarily operate at the quantum leve
provide the ideal experimental context to test quantum n
linear dynamics. Indeed such experiments will ultimately
volve the ability to follow the quantum dynamics of man
trapped ions with complex many-body interactions int
duced by externally imposed time dependent Hamiltonia
We thus believe it timely to consider tests of quantum ch
which can be made with current technology.

In Sec. II we define the classical dynamical system a
give a detailed analysis of the classical motion and the tr
sition to chaos. In Sec. III we give a quantum description
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the problem and in Sec. IV show that this system exhibit
suppression in the diffusion of momentum and position.
other words the total energy of the trapped ion is localized
contrast to classical diffusive heating of the motion. Fina
in Sec. V we discuss a possible physical realization of
system.

II. CLASSICAL MAP

The system has the Hamiltonian

H̃5
p̃2

2m
1

mV2

2
x̃21ke2a x̃2

T (
n52`

`

d~ t̃ 2nT!,

wherem is the mass of the ion trapped in a harmonic pote
tial of frequencyV. The ion is subject to a periodic sequen
of laser pulses with periodT. Theke2a x̃2

term in the Hamil-
tonian describes the potential felt by the ion due to
Gaussian structure of the laser. If we rescale time, posi
and momentum by lettingt̃ 5tT, x̃5(1/Aa)x, and p̃
5(mV/Aa)p the Hamiltonian rescales to

H~x,p,t !5
aT

mV
H̃~ x̃,p̃, t̃ !

5
v

2
~p21x2!1ke2x2

(
n52`

`

d~ t2n!, ~1!

wherev5VT and k5kaT/mV are dimensionless param
eters. The new variablesx, p, andt together with the Hamil-
tonianH are also dimensionless.

Between kicks the system has the solution (x,p)
5(x0 cosvt1p0 sinvt,2x0 sinvt1p0 cosvt). The effect of
the kick is to add a position dependent shift in the mom
tum of 2kxe2x2

. Denoting the mapping byF we can write it
as the composition of a kickK and a linear rotationW

F5W+K,

where

K~x,p!5~x,p12kxe2x2
!,

W~x,p!5~x cosv1p sinv,2x sinv1p cosv!.
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FIG. 1. Bifurcation diagram for the period 4
orbits ~2!. The stable region is in dark and th
unstable in light.
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HenceF maps (x,p) from just before a kick to one perio
later.

The fixed points ofF are at

~x,p!5~0,0!,F6AlnS k cot
v

2 D ,7 tan
v

2
AlnS k cot

v

2 D G .
The origin is stable ifk cot(v/2),1 and 2k tan(v/2),1.
Whenk cot(v/2).1 it becomes unstable via a pitchfork b
furcation which creates the second two fixed poin

These are stable fork cot(v/2),exp@ 1
2 csc2(v/2)#. When

2k tan(v/2).1 the origin becomes unstable via a peri
doubling bifurcation and two period 2 orbits are created

~x,p!5F6AlnS 2k tan
v

2 D ,7 cot
v

2
AlnS 2k tan

v

2 D G .
01340
.

These are stable for2k tan(v/2),exp@ 1
2sec2(v/2)#.

One can also find two sets of period 4 orbits which ex
for 2k tanv.1. The first set is at

~x,p!5S 6x,6x cot
v

2 D ,S 6x,7x tan
v

2 D , ~2!

where x5Aln(2k tanv). They are stable if2k tanv

,exp(12usecvu). A second set lie in between these orbits

~x,p!5~6x,6x cotv!,~0,6x cscv!.

These are always unstable.
It is instructive to study the process of creation and d

struction of these period 4 orbits in more detail. In Fig. 1 w
have drawn a bifurcation diagram. The period 4 orbits ex
FIG. 2. Phase portrait fork52 and v/2p
50.24.
1-2



QUANTUM AND CLASSICAL CHAOS FOR A SINGLE . . . PHYSICAL REVIEW A 61 013401
FIG. 3. As for Fig. 2 exceptv/2p50.248.
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for parameter values lying in the shaded regions. The reg
of lighter shade show where the first set of orbits~2! are
unstable. In Figs. 2 –6 a sequence of phase space picture
drawn for values ofv along the linek52. Figure 2 is for
v/2p50.24 and shows typical phase space structure for
system. Asv is increased, the arms of the star-shaped c
otic region grow in size. This can be seen in Fig. 3 wh
v/2p50.248. Atv/2p5 1

4 ~Fig. 4! these arms are infinitely
long chaotic channels which divide the phase space into
regions, creating the period 4 orbits at infinity. Figure
shows the period 4 orbits just after they are created (v/2p
50.252). They now move towards the origin asv is in-
creased further. On this journey the first set~2! shed their
stability via a pitchfork bifurcation but then regain it befo
destroying at the origin. Figure 6 shows the orbits just bef
destruction (v/2p50.42).
01340
ns

are

e
a-
e

ur

e

It is simple to see how the period 4 orbits were created
infinity when v52p/4. The kick has little influence on or
bits here and thusF reduces to simple linear rotation wit
period 4. In general, it can be shown that an orbit of periop
is created at infinity when

v5
2pq

p
,

and then destroyed at the origin when

cosv1k sinv5cos
2pq

p
,

whereq andp are natural numbers with a greatest comm
divisor of one. The condition for destruction is found b
FIG. 4. As for Fig. 2 exceptv/2p5
1
4 .
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FIG. 5. As for Fig. 2 exceptv/2p50.252.
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looking at the eigenvalues of the tangent map at the or
and then equating this linear rotation with the period of
orbit.

III. QUANTUM MAP

To construct the quantum map we start with the resca
Hamiltonian ~1! and define a dimensionless Planck’s co
stant k– via the commutation relation for position and m
mentum

@x,p#5
a

mv
@ x̃,p̃#5 i

a\

mv
[ i k– .

The time evolution of an initial state,ucn&, from just before
a kick through to one period later is given by
01340
in
e

d
-

ucn11&5expS 2 i

k– E
0

1

H~ t !dtD ucn& ~3!

5expS 2 iv

2k–
~p21x2! DexpS 2 ik

k–
e2x2D ucn&

~4!

[F̂ucn&. ~5!

Hence the Floquet operator,F̂, defines the quantum map
Now, defining the annihilation and creation operators to

a5
1

A2k–
~x1 ip ! and a†5

1

A2k–
~x2 ip !,
FIG. 6. As for Fig. 2 exceptv/2p50.42.
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FIG. 7. Phase portrait fork58 andv5p(3
2A5).
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respectively, and using the simple harmonic oscillator eig
states

un&5
1

An!
a†nu0&, n50,1,2, . . .

as an orthogonal basis we can rewrite Eq.~5! as

cm
n115Fmkck

n ,

wherecm
n 5^mucn& and

Fnm5^nuF̂um&5e2 iv(n1 1/2)^nuexpS 2 ik

k–
e2x2D um&.

The last term is found by taking the exponential of the ma
with components

^nu
2 ik

k–
e2x2

um&

5
2 ik

k–3/2Apn!m!2n1mE2`

`

HnS x

Ak–
D HmS x

Ak–
D

3e2(111/k– )x2
dx

5
2k~n1m21!~n1m23!•••1

k–3/2An!m!
S 2 k–

11 k– D (n1m11)/2

3 2F1F2n,2m;
12n2m

2
;
1

2 S 11
1

k– D G
for n1m even and vanishing otherwise. HereHn are Her-
mite polynomials and2F1 is the hypergeometric function
Note thatFnm50 whenevern1m is odd. This means tha
even and odd parity states do not couple underF̂ and thus
evolve independently.
01340
-

x

IV. LOCALIZATION

We now show numerically the presence of dynamical
calisation@5# in the system. Or, more precisely, we show th
classical diffusion is suppressed when the system is evo
quantum mechanically. For this, we have chosenv5p(3
2A5) andk58. In this parameter regime a large chaotic s
centred at the origin consumes the phase space~see Fig. 7!.
The initial state was chosen to beu0&, which has a Husimi
probability density of

u^zu0&u25e2uzu2 ~6!

in phase space. Herez5(1/A2k– )(x1 ip) and uz& are the
coherent states defined as

uz&5e2(1/2)uzu2(
n50

`
zn

An!
un&.

Thus our initial state is a highly localized Gaussian hum
centered at the origin. This was then evolved forward us
1800 of the even basis states. Figure 8 shows the ave
dimensionless energy,^x21p2&, after each kick. The light
gray is for k–50.5 and the dark gray is fork–50.2. The
energy under classical evolution is shown in black. Here
initial density ~6! with k–50.2 was chosen. One can clear
see in this figure that diffusion is suppressed after about
kicks. The procedure was repeated using only 1000 e
basis states to confirm accuracy and it was found that
difference in the energies did not exceed 1028 until after
1000 kicks. Thus the localization is truly a property of qua
tum mechanics.

V. DISCUSSION AND CONCLUSION

What are the physical requirements to realize this sys
in current ion trap experiments? Consider a9Be1 ion such as
used in the NIST experiments@3#, with a harmonic fre-
1-5
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FIG. 8. The average dimensionless energy
ter each kick for the initial stateu0& with k–
50.5 ~light gray!, k–50.2 ~dark gray!, and clas-
sical evolution~black!.
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quency in the relevant direction ofV51 MHz. The key pa-
rameter which determines the effective Planck constant is
parametera. If one uses a focused laser beam, a typi
value for this parameter is 1010 m2 and a resulting effective
Planck’s constant ofk–56.731025, which is hopelessly too
small. On the other hand, if we use a near-field probe
used in near-field optical scanning microscopy~NOSM!, to
inject the field we can get a value as high asa51014 m2

with a typical probe tip of diameter 10 nm. This correspon
to an effective Planck’s constant for9Be1 of about k–
50.7, which is more promising. To achieve a value for t
kick parameter of the order used above we would need
focus a few nanowatts into the NOSM probe which is qu
typical. This would correspond to an intensity of abo
1000 mW cm22 at the ion. If we choose the kick period t
be of the order of 10 ms, the kick parameterk has a value of
the order of unity. We conclude that this experiment is p
sible for a current single trapped-ion experiment with t
addition of near-field optical fibre probes.

The next question we need to ask of such a system is
are we to observe the motion of the ion? Fortunately
current single trapped-ion experiments are designed
cisely to enable careful monitoring of the motion states. T
details are described in Ref.@3#. The basic idea is to map th
motion states onto particular internal states of the ion wh
are then probed by a fluorescent shelving technique. In
ticular, it is possible to measure the center-of-mass energ
the ion in the trap. Each measurement however destroys
quantum state of the ion at that time, so repreparation of
ion initial state is required. One then needs to perform
peated experiments for differing number of kicks befo
reading out the center-of-mass energy. In this way it is p
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sible to monitor the energy of the motion as a function
kick number. Dynamical localization of the motion energy
the ion could thus be observed.

Finally we need to ask if it is feasible to prepare the init
states we have used in this paper. Again Ref.@3# shows that
it is possible to prepare the ion in the ground state of
harmonic trap, so this part is relatively easy. Laser pul
may then be used to displace this minimum uncertainty s
anywhere in the phase plane. This ability to place a locali
state anywhere in the phase plane would enable a deta
study of mixed chaotic and regular phase space structu
Unfortunately in the current experiment unwanted stray l
ear potentials cause a heating of the ion and thus it does
stay in the ground state for long, but rather undergoe
diffusive motion in the phase plane@6,7#. A very consider-
able amount of effort is currently being devoted to removi
this unwanted heating so that trapped ions can be used
quantum logic gate. We thus expect this problem to
solved or at least significantly mitigated.

Needless to say this is not an easy experiment. Introd
ing the near field probe close to the ion will cause additio
unwanted van der Walls forces to be exerted on the i
However, these forces, while making a detailed compari
to experiment more difficult, will not effect the generic tra
sition to chaos described above so long as they remain w
The heating of the ion due to stray linear potentials w
remain a problem to some extent. Such fluctuating forces
a source of decoherence and thus will tend to destroy lo
ization. Taking a longer view, however, the ease with wh
decoherence can be induced via this mechanism should
able a detailed study of the effect of noise on dynami
localization to be made, thus turning a bug into a feature
1-6
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