8,344 research outputs found

    HMMER web server: interactive sequence similarity searching

    Get PDF
    HMMER is a software suite for protein sequence similarity searches using probabilistic methods. Previously, HMMER has mainly been available only as a computationally intensive UNIX command-line tool, restricting its use. Recent advances in the software, HMMER3, have resulted in a 100-fold speed gain relative to previous versions. It is now feasible to make efficient profile hidden Markov model (profile HMM) searches via the web. A HMMER web server (http://hmmer.janelia.org) has been designed and implemented such that most protein database searches return within a few seconds. Methods are available for searching either a single protein sequence, multiple protein sequence alignment or profile HMM against a target sequence database, and for searching a protein sequence against Pfam. The web server is designed to cater to a range of different user expertise and accepts batch uploading of multiple queries at once. All search methods are also available as RESTful web services, thereby allowing them to be readily integrated as remotely executed tasks in locally scripted workflows. We have focused on minimizing search times and the ability to rapidly display tabular results, regardless of the number of matches found, developing graphical summaries of the search results to provide quick, intuitive appraisement of them

    Exact Asymptotic Results for a Model of Sequence Alignment

    Full text link
    Finding analytically the statistics of the longest common subsequence (LCS) of a pair of random sequences drawn from c alphabets is a challenging problem in computational evolutionary biology. We present exact asymptotic results for the distribution of the LCS in a simpler, yet nontrivial, variant of the original model called the Bernoulli matching (BM) model which reduces to the original model in the large c limit. We show that in the BM model, for all c, the distribution of the asymptotic length of the LCS, suitably scaled, is identical to the Tracy-Widom distribution of the largest eigenvalue of a random matrix whose entries are drawn from a Gaussian unitary ensemble. In particular, in the large c limit, this provides an exact expression for the asymptotic length distribution in the original LCS problem.Comment: 4 pages Revtex, 2 .eps figures include

    Non-local on-shell field redefinition for the SME

    Get PDF
    This work instigates a study of non-local field mappings within the Lorentz- and CPT-violating Standard-Model Extension (SME). An example of such a mapping is constructed explicitly, and the conditions for the existence of its inverse are investigated. It is demonstrated that the associated field redefinition can remove b-type Lorentz violation from free SME fermions in certain situations. These results are employed to obtain explicit expressions for the corresponding Lorentz-breaking momentum-space eigenspinors and their orthogonality relations.Comment: 12 pages, REVTeX

    Efficient chaining of seeds in ordered trees

    Get PDF
    We consider here the problem of chaining seeds in ordered trees. Seeds are mappings between two trees Q and T and a chain is a subset of non overlapping seeds that is consistent with respect to postfix order and ancestrality. This problem is a natural extension of a similar problem for sequences, and has applications in computational biology, such as mining a database of RNA secondary structures. For the chaining problem with a set of m constant size seeds, we describe an algorithm with complexity O(m2 log(m)) in time and O(m2) in space

    Bethe Ansatz in the Bernoulli Matching Model of Random Sequence Alignment

    Full text link
    For the Bernoulli Matching model of sequence alignment problem we apply the Bethe ansatz technique via an exact mapping to the 5--vertex model on a square lattice. Considering the terrace--like representation of the sequence alignment problem, we reproduce by the Bethe ansatz the results for the averaged length of the Longest Common Subsequence in Bernoulli approximation. In addition, we compute the average number of nucleation centers of the terraces.Comment: 14 pages, 5 figures (some points are clarified

    Generalized Buneman pruning for inferring the most parsimonious multi-state phylogeny

    Full text link
    Accurate reconstruction of phylogenies remains a key challenge in evolutionary biology. Most biologically plausible formulations of the problem are formally NP-hard, with no known efficient solution. The standard in practice are fast heuristic methods that are empirically known to work very well in general, but can yield results arbitrarily far from optimal. Practical exact methods, which yield exponential worst-case running times but generally much better times in practice, provide an important alternative. We report progress in this direction by introducing a provably optimal method for the weighted multi-state maximum parsimony phylogeny problem. The method is based on generalizing the notion of the Buneman graph, a construction key to efficient exact methods for binary sequences, so as to apply to sequences with arbitrary finite numbers of states with arbitrary state transition weights. We implement an integer linear programming (ILP) method for the multi-state problem using this generalized Buneman graph and demonstrate that the resulting method is able to solve data sets that are intractable by prior exact methods in run times comparable with popular heuristics. Our work provides the first method for provably optimal maximum parsimony phylogeny inference that is practical for multi-state data sets of more than a few characters.Comment: 15 page

    Consistency analysis of a nonbirefringent Lorentz-violating planar model

    Full text link
    In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor κμν\kappa_{\mu\nu}. The propagator of the gauge field is explicitly evaluated and expressed in terms of linear independent symmetric tensors, presenting only one physical mode. The same holds for the scalar propagator. A consistency analysis is performed based on the poles of the propagators. The isotropic parity-even sector is stable, causal and unitary mode for 0κ00<10\leq\kappa_{00}<1. On the other hand, the anisotropic sector is stable and unitary but in general noncausal. Finally, it is shown that this planar model interacting with a λφ4\lambda|\varphi|^{4}-Higgs field supports compactlike vortex configurations.Comment: 11 pages, revtex style, final revised versio

    A unifying framework for seed sensitivity and its application to subset seeds

    Get PDF
    We propose a general approach to compute the seed sensitivity, that can be applied to different definitions of seeds. It treats separately three components of the seed sensitivity problem -- a set of target alignments, an associated probability distribution, and a seed model -- that are specified by distinct finite automata. The approach is then applied to a new concept of subset seeds for which we propose an efficient automaton construction. Experimental results confirm that sensitive subset seeds can be efficiently designed using our approach, and can then be used in similarity search producing better results than ordinary spaced seeds

    PLAST-ncRNA: Partition function Local Alignment Search Tool for non-coding RNA sequences

    Get PDF
    Alignment-based programs are valuable tools for finding potential homologs in genome sequences. Previously, it has been shown that partition function posterior probabilities attuned to local alignment achieve a high accuracy in identifying distantly similar non-coding RNA sequences that are hidden in a large genome. Here, we present an online implementation of that alignment algorithm based on such probabilities. Our server takes as input a query RNA sequence and a large genome sequence, and outputs a list of hits that are above a mean posterior probability threshold. The output is presented in a format suited to local alignment. It can also be viewed within the PLAST alignment viewer applet that provides a list of all hits found and highlights regions of high posterior probability within each local alignment. The server is freely available at http://plastrna.njit.edu

    CCDB: a curated database of genes involved in cervix cancer

    Get PDF
    The Cervical Cancer gene DataBase (CCDB, http://crdd.osdd.net/raghava/ccdb) is a manually curated catalog of experimentally validated genes that are thought, or are known to be involved in the different stages of cervical carcinogenesis. In spite of the large women population that is presently affected from this malignancy still at present, no database exists that catalogs information on genes associated with cervical cancer. Therefore, we have compiled 537 genes in CCDB that are linked with cervical cancer causation processes such as methylation, gene amplification, mutation, polymorphism and change in expression level, as evident from published literature. Each record contains details related to gene like architecture (exon–intron structure), location, function, sequences (mRNA/CDS/protein), ontology, interacting partners, homology to other eukaryotic genomes, structure and links to other public databases, thus augmenting CCDB with external data. Also, manually curated literature references have been provided to support the inclusion of the gene in the database and establish its association with cervix cancer. In addition, CCDB provides information on microRNA altered in cervical cancer as well as search facility for querying, several browse options and an online tool for sequence similarity search, thereby providing researchers with easy access to the latest information on genes involved in cervix cancer
    corecore