
HAL Id: hal-00018114
https://hal.archives-ouvertes.fr/hal-00018114v2

Submitted on 14 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A unifying framework for seed sensitivity and its
application to subset seeds.

Gregory Kucherov, Laurent Noé, Mihkail Roytberg

To cite this version:
Gregory Kucherov, Laurent Noé, Mihkail Roytberg. A unifying framework for seed sensitivity and its
application to subset seeds.. Journal of Bioinformatics and Computational Biology, World Scientific
Publishing, 2006, 4 (2), pp.553-69. �10.1142/S0219720006001977�. �hal-00018114v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50432343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00018114v2
https://hal.archives-ouvertes.fr

cc
sd

-0
00

18
11

4,
 v

er
si

on
 2

 -
 1

4
S

ep
 2

00
6

A unifying framework for seed sensitivity and its application to
subset seeds

Gregory Kucherov∗ Laurent Noé† Mikhail Roytberg‡§

Abstract

We propose a general approach to compute the seed sensitivity, that can be applied to different
definitions of seeds. It treats separately three componentsof the seed sensitivity problem – a set of
target alignments, an associated probability distribution, and a seed model – that are specified by distinct
finite automata. The approach is then applied to a new conceptof subset seedsfor which we propose
an efficient automaton construction. Experimental resultsconfirm that sensitive subset seeds can be
efficiently designed using our approach, and can then be usedin similarity search producing better results
than ordinary spaced seeds.

1 Introduction

In the framework of pattern matching and similarity search in biological sequences, seeds specify a class
of short sequence motif which, if shared by two sequences, are assumed to witness a potential similarity.
Spaced seeds have been introduced several years ago [8, 18] and have been shown to improve significantly
the efficiency of the search. One of the key problems associated with spaced seeds is a precise estimation
of the sensitivity of the associated search method. This is important for comparing seeds and for choosing
most appropriate seeds for a sequence comparison problem tosolve.

The problem of seed sensitivity depends on several components. First, it depends on theseed model
specifying the class of allowed seeds and the way that seeds match (hit) potential alignments. In the basic
case, seeds are specified by binary words of certain length (span), possibly with a constraint on the number
of 1’s (weight). However, different extensions of this basic seed model have been proposed in the literature,
such as multi-seed (or multi-hit) strategies [2, 14, 18], seed families [17, 20, 23, 16, 22, 6], seeds over
non-binary alphabets [9, 19], vector seeds [4, 6].

The second parameter is the class oftarget alignmentsthat are alignment fragments that one aims to
detect. Usually, these aregaplessalignments of a given length. Gapless alignments are easy tomodel, in the
simplest case they are represented by binary sequences in the match/mismatch alphabet. This representation
has been adopted by many authors [18, 13, 5, 10, 7, 11]. The binary representation, however, cannot distin-
guish between different types of matches and mismatches, and is clearly insufficient in the case of protein
sequences. In [4, 6], an alignment is represented by a sequence of real numbers that arescoresof matches
or mismatches at corresponding positions. A related, but yet different approach is suggested in [19], where
DNA alignments are represented by sequences on the ternary alphabet of match/transition/transversion.

∗INRIA/LORIA, 615, rue du Jardin Botanique, B.P. 101, 54602 Villers-lès-Nancy, France,Gregory.Kucherov@loria.fr
†UHP/LORIA, 615, rue du Jardin Botanique, B.P. 101, 54602 Villers-lès-Nancy, France,Laurent.Noe@loria.fr
‡part of this work has been done during a visit to LORIA/INRIA in summer 2004
§Institute of Mathematical Problems in Biology, Pushchino,Moscow Region, Russia,roytberg@impb.psn.ru

1

Finally, another generalization of simple binary sequences was considered in [15], where alignments are
required to behomogeneous, i.e. to contain no sub-alignment with a score larger than the entire alignment.

The third necessary ingredient for seed sensitivity estimation is the probability distribution on the set of
target alignments. Again, in the simplest case, alignment sequences are assumed to obey a Bernoulli model
[18, 10]. In more general settings, Markov or Hidden Markov models are considered [7, 5]. A different
way of defining probabilities on binary alignments has been taken in [15]: all homogeneous alignments of a
given length are considered equiprobable.

Several algorithms for computing the seed sensitivity for different frameworks have been proposed in
the above-mentioned papers. All of them, however, use a common dynamic programming (DP) approach,
first brought up in [13].

In the present paper, we propose a general approach to computing the seed sensitivity. This approach
subsumes the cases considered in the above-mentioned papers, and allows to deal with new combinations
of the three seed sensitivity parameters. The underlying idea of our approach is to specify each of the three
components – the seed, the set of target alignments, and the probability distribution – by a separate finite
automaton.

A deterministic finite automaton (DFA) that recognizes all alignments matched by given seeds was
already used in [7] for the case of ordinary spaced seeds. In this paper, we assume that the set of target
alignments is also specified by a DFA and, more importantly, that the probabilistic model is specified by a
probability transducer– a probability-generating finite automaton equivalent to HMM with respect to the
class of generated probability distributions.

We show that once these three automata are set, the seed sensitivity can be computed by a unique gen-
eral algorithm. This algorithm reduces the problem to a computation of the total weight over all paths in an
acyclic graph corresponding to the automaton resulting from the product of the three automata. This com-
putation can be done by a well-known dynamic programming algorithm [21, 12] with the time complexity
proportional to the number of transitions of the resulting automaton. Interestingly, all above-mentioned
seed sensitivity algorithms considered by different authors can be reformulated as instances of this general
algorithm.

In the second part of this work, we study a new concept ofsubset seeds– an extension of spaced seeds
that allows to deal with a non-binary alignment alphabet and, on the other hand, still allows an efficient
hashing method to locate seeds. For this definition of seeds,we define a DFA with a number of states
independent of the size of the alignment alphabet. Reduced to the case of ordinary spaced seeds, this DFA
construction gives the same worst-case number of states as the Aho-Corasick DFA used in [7]. Moreover,
our DFA has always no more states than the DFA of [7], and has substantially less states on average.

Together with the general approach proposed in the first part, our DFA gives an efficient algorithm for
computing the sensitivity of subset seeds, for different classes of target alignments and different probability
transducers. In the experimental part of this work, we confirm this by running an implementation of our
algorithm in order to design efficient subset seeds for different probabilistic models, trained on real genomic
data. We also show experimentally that designed subset seeds allow to find more significant alignments than
ordinary spaced seeds of equivalent selectivity.

2 General Framework

Estimating the seed sensitivity amounts to compute the probability for a random word (target alignment),
drawn according to a given probabilistic model, to belong toa given language, namely the language of all
alignments matched by a given seed (or a set of seeds).

2

2.1 Target Alignments

Target alignments are represented by words over an alignment alphabetA. In the simplest case, consid-
ered most often, the alphabet is binary and expresses a matchor a mismatch occurring at each align-
ment column. However, it could be useful to consider larger alphabets, such as the ternary alphabet of
match/transition/transversion for the case of DNA (see [19]). The importance of this extension is even more
evident for the protein case ([6]), where different types ofamino acid pairs are generally distinguished.

Usually, the set of target alignments is a finite set. In the case considered most often [18, 13, 5, 10,
7, 11], target alignments are all words of a given lengthn. This set is trivially a regular language that
can be specified by a deterministic automaton with(n + 1) states. However, more complex definitions of
target alignments have been considered (see e.g. [15]) thataim to capture more adequately properties of
biologically relevant alignments. In general, we assume that the set of target alignments is a finite regular
languageLT ∈ A

∗ and thus can be represented by an acyclic DFAT =< QT , q
0
T , q

F
T ,A, ψT >.

2.2 Probability Assignment

Once an alignment languageLT has been set, we have to define a probability distribution on the words of
LT . We do this using probability transducers.

A probability transducer is a finite automaton without final states in which each transition outputs a
probability.

Definition 1. A probability transducerG over an alphabetA is a 4-tuple< QG, q
0
G,A, ρG >, whereQG is

a finite set of states,q0G ∈ QG is an initial state, andρG : QG×A×QG → [0, 1] is a real-valued probability
function such that
∀q ∈ QG,

∑

q′∈QG,a∈A ρG(q, a, q′) = 1.

A transition of G is a triplete =< q, a, q′ > such thatρ(q, a, q′) > 0. Lettera is called thelabel of e
and denotedlabel(e). A probability transducerG is deterministicif for eachq ∈ QG and eacha ∈ A, there
is at most one transition< q, a, q′ >. For each pathP = (e1, ..., en) in G, we define itslabel to be the word
label(P) = label(e1)...label (en), and the associated probability to be the productρ(P) =

∏n
i=1 ρG(ei). A

path isinitial , if its start state is the initial stateq0G of the transducerG.

Definition 2. Theprobabilityof a wordw ∈ A∗ according to a probability transducerG =< QG, q
0
G,A, ρG >,

denotedPG(w), is the sum of probabilities of all initial paths inG with the labelw. PG(w) = 0 if no such
path exists. The probabilityPG(L) of a finite languageL ⊆ A∗ according a probability transducerG is
defined byPG(L) =

∑

w∈L PG(w).

Note that for anyn and forL = An (all words of lengthn), PG(L) = 1.
Probability transducers can express common probability distributions on words (alignments). Bernoulli

sequences with independent probabilities of each symbol [18, 10, 11] can be specified with deterministic
one-state probability transducers. In Markov sequences oforderk [7, 20], the probability of each symbol
depends onk previous symbols. They can therefore be specified by a deterministic probability transducer
with at most|A|k states.

A Hidden Markov model (HMM) [5] corresponds, in general, to anon-deterministic probability trans-
ducer. The states of this transducer correspond to the (hidden) states of the HMM, plus possibly an ad-
ditional initial state. Inversely, for each probability transducer, one can construct an HMM generating the
same probability distribution on words. Therefore, non-deterministic probability transducers and HMMs
are equivalent with respect to the class of generated probability distributions. The proofs are straightforward
and are omitted due to space limitations.

3

2.3 Seed automata and seed sensitivity

Since the advent of spaced seeds [8, 18], different extensions of this idea have been proposed in the literature
(see Introduction). For all of them, the set of possible alignment fragments matched by a seed (or by a set
of seeds) is a finite set, and therefore the set of matched alignments is a regular language. For the original
spaced seed model, this observation was used by Buhler et al.[7] who proposed an algorithm for computing
the seed sensitivity based on a DFA defining the language of alignments matched by the seed. In this paper,
we extend this approach to a general one that allows a uniformcomputation of seed sensitivity for a wide
class of settings including different probability distributions on target alignments, as well as different seed
definitions.

Consider a seed (or a set of seeds)π under a given seed model. We assume that the set of alignmentsLπ

matched byπ is a regular language recognized by a DFASπ =< QS, q
0
S , Q

F
S ,A, ψS >. Consider a finite

setLT of target alignments and a probability transducerG. Under this assumptions, the sensitivity ofπ is
defined as the conditional probability

PG(LT ∩ Lπ)

PG(LT)
. (1)

An automaton recognizingL = LT ∩ Lπ can be obtained as the product of automataT andSπ recog-
nizingLT andLπ respectively. LetK =< QK , q

0
K , Q

F
K ,A, ψK > be this automaton. We now consider the

productW of K andG, denotedK ×G, defined as follows.

Definition 3. Given a DFAK =< QK , q
0
K , Q

F
K ,A, ψK > and a probability transducerG =< QG, q

0
G,A, ρG >,

the product ofK andG is theprobability-weighted automatonW =< QW , q0W , QF
W ,A, ρW > (for short,

PW-automaton) such that

• QW = QK ×QG,

• q0W = (q0K , q
0
G),

• qF
W = {(qK , qG)|qK ∈ Q

F
K},

• ρW ((qK , qG), a, (q′K , q
′
G)) =

{

ρG(qG, a, q
′
G) if ψK(qK , a) = q′K ,

0 otherwise.

W can be viewed as a non-deterministic probability transducer with final states.ρW ((qK , qG), a, (q′K , q
′
G))

is theprobability of the transition< (qK , qG), a, (q′K , q
′
G) >. A path inW is calledfull if it goes from the

initial to a final state.

Lemma 4. LetG be a probability transducer. LetL be a finite language andK be a deterministic automaton
recognizingL. LetW = G×K. The probabilityPG(L) is equal to sum of probabilities of all full paths in
W .

Proof. SinceK is a deterministic automaton, each wordw ∈ L corresponds to a single accepting path in
K and the paths inG labeledw (see Definition 1) are in one-to-one correspondence with thefull path inW
acceptingw. By definition,PG(w) is equal to the sum of probabilities of all paths inG labeledw. Each
such path corresponds to a unique path inW , with the same probability. Therefore, the probability ofw is
the sum of probabilities of corresponding paths inW . Each such path is a full path, and paths for distinct
wordsw are disjoint. The lemma follows.

4

2.4 Computing Seed Sensitivity

Lemma 4 reduces the computation of seed sensitivity to a computation of the sum of probabilities of paths
in a PW-automaton.

Lemma 5. Consider an alignment alphabetA, a finite setLT ⊆ A
∗ of target alignments, and a setLπ ⊆

A∗ of all alignments matched by a given seedπ. LetK =< QK , q
0
t , Q

F
K ,A, ψQ > be an acyclic DFA

recognizing the languageL = LT ∩ Lπ. Let furtherG =< QG, q
0
G,A, ρ > be a probability transducer

defining a probability distribution on the setLT . ThenPG(L) can be computed in time

O(|QG|
2 · |QK | · |A|) (2)

and space
O(|QG| · |QK |). (3)

Proof. By Lemma 4, the probability ofL with respect toG can be computed as the sum of probabilities of
all full paths inW . SinceK is an acyclic automaton, so isW . Therefore, the sum of probabilities of all full
paths inW leading to final statesqF

W can be computed by a classical DP algorithm [21] applied to acyclic
directed graphs ([12] presents a survey of application of this technique to different bioinformatic problems).
The time complexity of the algorithm is proportional to the number of transitions inW . W has|QG| · |QK |
states, and for each letter ofA, each state has at most|QG| outgoing transitions. The bounds follow.

Lemma 5 provides a general approach to compute the seed sensitivity. To apply the approach, one has
to define three automata:

• a deterministic acyclic DFAT specifying a set of target alignments over an alphabetA (e.g. all words
of a given length, possibly verifying some additional properties),

• a (generally non-deterministic) probability transducerG specifying a probability distribution on target
alignments (e.g. Bernoulli model, Markov sequence of orderk, HMM),

• a deterministic DFASπ specifying the seed model via a set of matched alignments.

As soon as these three automata are defined, Lemma 5 can be usedto compute probabilitiesPG(LT ∩ Lπ)
andPG(LT) in order to estimate the seed sensitivity according to (1).

Note that if the probability transducerG is deterministic (as it is the case for Bernoulli models or Markov
sequences), then the time complexity (2) isO(|QG| · |QK | · |A|). In general, the complexity of the algorithm
can be improved by reducing the involved automata. Buhler etal. [7] introduced the idea of using the
Aho-Corasick automaton [1] as the seed automatonSπ for a spaced seed. The authors of [7] considered all
binary alignments of a fixed lengthn distributed according to a Markov model of orderk. In this setting,
the obtained complexity wasO(w2s−w2kn), wheres andw are seed’s span and weight respectively. Given
that the size of the Aho-Corasick automaton isO(w2s−w), this complexity is automatically implied by
Lemma 5, as the size of the probability transducer isO(2k), and that of the target alignment automaton is
O(n). Compared to [7], our approach explicitly distinguishes the descriptions of matched alignments and
their probabilities, which allows us to automatically extend the algorithm to more general cases.

Note that the idea of using the Aho-Corasick automaton can beapplied to more general seed models than
individual spaced seeds (e.g. to multiple spaced seeds, as pointed out in [7]). In fact, all currently proposed
seed models can be described by a finite set of matched alignment fragments, for which the Aho-Corasick
automaton can be constructed. We will use this remark in later sections.

5

The sensitivity of a spaced seed with respect to an HMM-specified probability distribution over binary
target alignments of a given lengthn was studied by Brejova et al. [5]. The DP algorithm of [5] has a
lot in common with the algorithm implied by Lemma 5. In particular, the states of the algorithm of [5]
are triples< w, q,m >, wherew is a prefix of the seedπ, q is a state of the HMM, andm ∈ [0..n].
The states therefore correspond to the construction implied by Lemma 5. However, the authors of [5] do
not consider any automata, which does not allow to optimize the preprocessing step (counterpart of the
automaton construction) and, on the other hand, does not allow to extend the algorithm to more general seed
models and/or different sets of target alignments.

A key to an efficient solution of the sensitivity problem remains the definition of the seed. It should be
expressive enough to be able to take into account propertiesof biological sequences. On the other hand, it
should be simple enough to be able to locate seeds fast and to get an efficient algorithm for computing seed
sensitivity. According to the approach presented in this section, the latter is directly related to the size of a
DFA specifying the seed.

3 Subset seeds

3.1 Definition

Ordinary spaced seeds use the simplest possible binary “match-mismatch” alignment model that allows an
efficient implementation by hashing all occurring combinations of matching positions. A powerful gener-
alization of spaced seeds, calledvector seeds, has been introduced in [4]. Vector seeds allow one to use an
arbitrary alignment alphabet and, on the other hand, provide a flexible definition of a hit based on a coopera-
tive contribution of seed positions. A much higher expressiveness of vector seeds lead to more complicated
algorithms and, in particular, prevents the application ofdirect hashing methods at the seed location stage.

In this section, we considersubset seedsthat have an intermediate expressiveness between spaced and
vector seeds. It allows an arbitrary alignment alphabet and, on the other hand, still allows using a direct
hashing for locating seed, which maps each string to a uniqueentry of the hash table. We also propose a
construction of a seed automaton for subset seeds, different from the Aho-Corasick automaton. The automa-
ton hasO(w2s−w) statesregardless of the size of the alignment alphabet, wheres andw are respectively
the span of the seed and the number of “must-match” positions. From the general algorithmic framework
presented in the previous section (Lemma 5), this implies that the seed sensitivity can be computed for
subset seeds with same complexity as for ordinary spaced seeds. Note also that for the binary alignment
alphabet, this bound is the same as the one implied by the Aho-Corasick automaton. However, for larger
alphabets, the Aho-Corasick construction leads toO(w|A|s−w) states. In the experimental part of this paper
(section 4.1) we will show that even for the binary alphabet,our automaton construction yields a smaller
number of states in practice.

Consider an alignment alphabetA. We always assume thatA contains a symbol1, interpreted as
“match”. A subset seedis defined as a word over aseed alphabetB, such that

• letters ofB denote subsets of the alignment alphabetA containing1 (B ⊆ {1} ∪ 2A),

• B contains a letter# that denotes subset{1},

• a subset seedb1b2 . . . bm ∈ Bm matches an alignment fragmenta1a2 . . . am ∈ A
m if ∀i ∈ [1..m],

ai ∈ bi.

The#-weightof a subset seedπ is the number of# in π and thespanof π is its length.

6

Example1. [19] considered the alignment alphabetA = {1, h, 0} representing respectively a match, a
transition mismatch, or a transversion mismatch in a DNA sequence alignment. The seed alphabet is
B = {#,@, } denoting respectively subsets{1}, {1, h}, and{1, h, 0}. Thus, seedπ = #@ # matches
alignments = 10h1h1101 at positions4 and6. The span ofπ is 4, and the#-weight ofπ is 2.

Note that unlike the weight of ordinary spaced seeds, the#-weight cannot serve as a measure of seed
selectivity. In the above example, symbol@ should be assigned weight0.5, so that the weight ofπ is equal
to 2.5 (see [19]).

3.2 Subset Seed Automaton

Let us fix an alignment alphabetA, a seed alphabetB, and a seedπ = π1π2 . . . πm ∈ B
∗ of spanm and

#-weightw. LetRπ be the set of all non-# positions inπ, |Rπ| = r = m−w. We now define an automaton
Sπ =< Q, q0, Qf ,A, ψ : Q×A → Q > that recognizes the set of all alignments matched byπ.

The statesQ of Sπ are pairs< X, t > such thatX ⊆ Rπ, t ∈ [0, . . . ,m], with the following invariant
condition. Suppose thatSπ has read a prefixs1 . . . sp of an alignments and has come to a state< X, t >.
Thent is the length of the longest suffix ofs1 . . . sp of the form1

i, i ≤ m, andX contains all positions
xi ∈ Rπ such that prefixπ1 · · · πxi

of π matches a suffix ofs1 · · · sp−t.

(a)
π = #@# ## ###

(b)
s = 111h1011h11...

(c)

s9 t

111h1011h11...
π1..7 =#@# ##

π1..4 =#@#
π1..2 =#@

Figure 1: Illustration to Example 2

Example2. In the framework of Example 1, consider a seedπ and an alignment prefixs of lengthp = 11
given on Figure 1(a) and (b) respectively. The lengtht of the last run of1’s of s is 2. The last mismatch
position ofs is s9 = h. The setRπ of non-# positions ofπ is {2, 4, 7} andπ has 3 prefixes ending at
positions ofRπ (Figure 1(c)). Prefixesπ1..2 andπ1..7 do match suffixes ofs1s2 . . . s9, and prefixπ1..4 does
not. Thus, the state of the automaton after readings1s2 . . . s11 is< {2, 7}, 2 >.

The initial stateq0 of Sπ is the state< ∅, 0 >. The final statesQf of Sπ are all statesq =< X, t >,
wheremax{X}+ t = m. All final states are merged into one state.

The transition functionψ(q, a) is defined as follows: Ifq is a final state, then∀a ∈ A, ψ(q, a) = q. If
q =< X, t > is a non-final state, then

• if a = 1 thenψ(q, a) =< X, t+ 1 >,

• otherwiseψ(q, a) =< XU ∪XV , 0 > with

– XU = {x|x ≤ t+ 1 and a matches πx}

– XV = {x+ t+ 1|x ∈ X and a matches πx+t+1}

Lemma 6. The automatonSπ accepts the set of all alignments matched byπ.

Proof. It can be verified by induction that the invariant condition on the states< X, t >∈ Q is preserved by
the transition functionψ. The final states verifymax{X} + t = m, which implies thatπ matches a suffix
of s1 . . . sp.

7

Lemma 7. The number of states of the automatonSπ is no more than(w + 1)2r.

Proof. Assume thatRπ = {x1, x2, . . . , xr} andx1 < x2 · · · < xr. Let Qi be the set of non-final states
< X, t > with max{X} = xi, i ∈ [1..r]. For statesq =< X, t >∈ Qi there are2i−1 possible values ofX
andm− xi possible values oft, asmax{X} + t ≤ m− 1.

Thus,

|Qi| ≤ 2i−1(m− xi) ≤ 2i−1(m− i), and (4)
r

∑

i=1

|Qi| ≤
r

∑

i=1

2i−1(m− i) = (m− r + 1)2r −m− 1. (5)

Besides statesQi, Q containsm states< ∅, t > (t ∈ [0..m − 1]) and one final state. Thus,|Q| ≤
(m− r + 1)2r = (w + 1)2r .

Note that ifπ starts with#, which is always the case for ordinary spaced seeds, thenXi ≥ i + 1,
i ∈ [1..r], and the bound of (4) rewrites to2i−1(m − i − 1). This results in the same number of statesw2r

as for the Aho-Corasick automaton [7]. The construction of automatonSπ is optimal, in the sense that no
two states can be merged in general, as the following Lemma states.

Lemma 8. Consider a spaced seedπ which consists of two “must-match” symbols# separated byr jokers.
Then the automatonSπ is reduced, that is any non-final state is reachable from the initial stateq0, and any
two non-final statesq, q′ are non-equivalent.

Proof. See appendix A.

A straightforward generation of the transition table of theautomatonSπ can be performed in timeO(r ·
w ·2r · |A|). A more complicated algorithm allows one to reduce the boundtoO(w ·2r · |A|). This algorithm
is described in full details in Appendix B. Here we summarizeit in the following Lemma.

Lemma 9. The transition table of automatonSπ can be constructed in time proportional to its size, which
isO(w · 2r · |A|).

In the next section, we demonstrate experimentally that on average, our construction yields a very com-
pact automaton, close to the minimal one. Together with the general approach of section 2, this provides
a fast algorithm for computing the sensitivity of subset seeds and, in turn, allows to perform an efficient
design of spaced seeds well-adapted to the similarity search problem under interest.

4 Experiments

Several types of experiments have been performed to test thepractical applicability of the results of sec-
tions 2,3. We focused on DNA similarity search, and set the alignment alphabetA to {1, h, 0} (match,
transition, transversion). For subset seeds, the seed alphabetB was set to{#,@, }, where# = {1},@ =
{1, h}, = {1, h, 0} (see Example 1). The weight of a subset seed is computed by assigning weights1, 0.5
and0 to symbols#, @ and respectively.

8

4.1 Size of the automaton

We compared the size of the automatonSπ defined in section 3 and the Aho-Corasick automaton [1], bothfor
ordinary spaced seeds (binary seed alphabet) and for subsetseeds. The Aho-Corasick automaton for spaced
seeds was constructed as defined in [7]. For subset seeds, a straightforward generalization was considered:
the Aho-Corasick construction was applied to the set of alignment fragments matched by the seed.

Tables 1(a) and 1(b) present the results for spaced seeds andsubset seeds respectively. For each seed
weightw, we computed the average number of states (avg. size) of the Aho-Corasick automaton and our
automatonSπ, and reported the corresponding ratio (δ) with respect to the average number of states of the
minimized automaton. The average was computed over all seeds of span up tow + 8 for spaced seeds and
all seeds of span up tow+5 with two @’s for subset seeds. Interestingly, our automaton turns outto be more

Spaced Aho-Corasick Sπ Minimized
w avg. size δ avg. size δ avg. size

9 345.94 3.06 146.28 1.29 113.21
10 380.90 3.16 155.11 1.29 120.61
11 415.37 3.25 163.81 1.28 127.62
12 449.47 3.33 172.38 1.28 134.91
13 483,27 3.41 180.89 1.28 141.84

Subset Aho-Corasick Sπ Minimized
w avg. size δ avg. size δ avg. size

9 1900.65 15.97 167.63 1.41 119,00
10 2103.99 16.50 177.92 1.40 127.49
11 2306.32 16.96 188.05 1.38 135.95
12 2507.85 17.42 198.12 1.38 144.00
13 2709.01 17.78 208.10 1.37 152.29

(a) (b)

Table 1: Comparison of the average number of states of Aho-Corasick automaton, automatonSπ of section 3
and minimized automaton

compact than the Aho-Corasick automaton not only on non-binary alphabets (which was expected), but also
on the binary alphabet (cf Table 1(a)). Note that for a given seed, one can define a surjective mapping from
the states of the Aho-Corasick automaton onto the states of our automaton. This implies that our automaton
hasalwaysno more states than the Aho-Corasick automaton.

4.2 Seed Design

In this part, we considered several probability transducers to design spaced or subset seeds. The target
alignments included all alignments of length64 on alphabet{1, h, 0}. Four probability transducers have
been studied (analogous to those introduced in [3]):

• B: Bernoulli model

• DT1: deterministic probability transducer specifying probabilities of {1, h, 0} at each codon position
(extension of theM (3) model of [3] to the three-letter alphabet),

• DT2: deterministic probability transducer specifying probabilities of each of the 27 codon instances
{1, h, 0}3 (extension of theM (8) model of [3] to the three-letter alphabet),

• NT : non-deterministic probability transducer combining four copies ofDT2 specifying four distinct
codon conservation levels (called HMM model in [3]).

ModelsDT1, DT2 andNT have been trained on alignments resulting from a pairwise comparison of40
bacteria genomes. Details of the training procedure as wellas the resulting parameter values are given in
Appendix C.

For each of the four probability transducers, we computed the best seed of weightw (w = 9, 10, 11, 12)
among two categories: ordinary spaced seeds of weightw and subset seeds of weightw with two @. Ordi-
nary spaced seeds were enumerated exhaustively up to a givenspan, and for each seed, the sensitivity was

9

computed using the algorithmic approach of section 2 and theseed automaton construction of section 3.
Each such computation took between 10 and 500ms on a Pentium IV 2.4GHz computer depending on the
seed weight/span and the model used. In each experiment, themost sensitive seed found has been kept. The
results are presented in Tables 2-5.

w spaced seeds Sens. subset seeds, two@ Sens.

9 ### # # ## ## 0.4183 ### # #@# @## 0.4443
10 ## ## ## # ### 0.2876 ### @# @# # ### 0.3077
11 ### ### # # ### 0.1906 ##@# ## # # @### 0.2056
12 ### # ## # ## ### 0.1375 ##@# # ## #@ #### 0.1481

Table 2: Best seeds and their sensitivity for probability transducer B

w spaced seeds Sens. subset seeds, two@ Sens.

9 ### ## ## ## 0.4350 ##@ ## ## ##@ 0.4456
10 ## ## ## ## ## 0.3106 ## ## @## ##@# 0.3173
11 ## ## ## ## ### 0.2126 ##@#@ ## ## ### 0.2173
12 ## ## ## ## #### 0.1418 ## @### ## ##@## 0.1477

Table 3: Best seeds and their sensitivity for probability transducer DT1

w spaced seeds Sens. subset seeds, two@ Sens.

9 # ## ## ## ## 0.5121 # #@ ## @ ## ## 0.5323
10 ## ## ## ## ## 0.3847 ## @# ## @ ## ## 0.4011
11 ## ## # # # ## ## 0.2813 ## ## @# # # #@ ## 0.2931
12 ## ## ## # # ## ## 0.1972 ## ## #@ ## @ ## ## 0.2047

Table 4: Best seeds and their sensitivity for probability transducer DT2

In all cases, subset seeds yield a better sensitivity than ordinary spaced seeds. The sensitivity increment
varies up to 0.04 which is a notable increase. As shown in [19], the gain in using subset seeds increases
substantially when the transition probability is greater than the inversion probability, which is very often the
case in related genomes.

4.3 Comparative performance of spaced and subset seeds

We performed a series of whole genome comparisons in order tocompare the performance of designed
spaced and subset seeds. Eight complete bacterial genomes1 have been processed against each other using
the YASS software [19]. Each comparison was done twice: one with a spaced seed and another with a subset
seed of the same weight.

The threshold E-value for the output alignments was set to10, and for each comparison, the number of
alignments with E-value smaller than10−3 found by each seed, and the number of exclusive alignments were
reported. By “exclusive alignment” we mean any alignment ofE-value less than10−3 that does not share a

1NC 000907.fna, NC002662.fna, NC003317.fna, NC003454.fna, NC004113.fna, NC001263.fna, NC003112.fna obtained
from NCBI

10

w spaced seeds Sens. subset seeds, two@ Sens.

9 ## ## ## ## # 0.5253 ## @@ ## ## ## 0.5420
10 ## ## ## ## ## 0.4123 ## ## ## @@ ## # 0.4190
11 ## ## ## ## ## # 0.3112 ## ## ## @@ ## ## 0.3219
12 ## ## ## ## ## ## 0.2349 ## ## ## @@ ## ## # 0.2412

Table 5: Best seeds and their sensitivity for probability transducer NT

common part (do not overlap in both compared sequences) withany alignment found by another seed. To
take into account a possible bias caused by splitting alignments into smaller ones (X-drop effect), we also
computed the total length of exclusive alignments. Table 6 summarizes these experiments for weights 9 and
10 and theDT2 andNT probabilistic models. Each line corresponds to a seed givenin Table 4 or Table 5,
depending on the indicated probabilistic model. In all cases, best subset seeds detect from 1% to 8% more

seed time #align #ex.align ex. align length

DT2, w = 9, spaced seed 15:14 19101 1583 130512
DT2, w = 9, subset seed, two@ 14:01 20127 1686 141560

DT2, w = 10, spaced seed 8:45 18284 1105 10174
DT2, w = 10, subset seed, two@ 8:27 18521 1351 12213

NT , w = 9, spaced seed 42:23 20490 1212 136049
NT , w = 9, subset seed, two@ 41:58 21305 1497 150127

NT , w = 10, spaced seed 11:45 19750 942 85208
NT , w = 10, subset seed, two@ 10:31 21652 1167 91240

Table 6: Comparative test of subset seeds vs spaced seeds. Reported execution times (min:sec) were ob-
tained on a Pentium IV 2.4GHz computer.

significant alignments compared to best spaced seeds of sameweight.

5 Discussion

We introduced a general framework for computing the seed sensitivity for various similarity search settings.
The approach can be seen as a generalization of methods of [7,5] in that it allows to obtain algorithms
with the same worst-case complexity bounds as those proposed in these papers, but also allows to obtain
efficient algorithms for new formulations of the seed sensitivity problem. This versatility is achieved by
distinguishing and treating separately the three ingredients of the seed sensitivity problem: a set of target
alignments, an associated probability distributions, anda seed model.

We then studied a new concept ofsubset seedswhich represents an interesting compromise between the
efficiency of spaced seeds and the flexibility of vector seeds. For this type of seeds, we defined an automaton
with O(w2r) states regardless of the size of the alignment alphabet, andshowed that its transition table can
be constructed in timeO(w2r |A|). Projected to the case of spaced seeds, this construction gives the same
worst-case bound as the Aho-Corasick automaton of [7], but results in a smaller number of states in practice.
Different experiments we have done confirm the practical efficiency of the whole method, both at the level
of computing sensitivity for designing good seeds, as well as using those seeds for DNA similarity search.

As far as the future work is concerned, it would be interesting to study the design of efficient spaced
seeds for protein sequence search (see [6]), as well as to combine spaced seeds with other techniques such
as seed families [17, 20, 16] or the group hit criterion [19].

11

Acknowledgements G. Kucherov and L. Noé have been supported by theACI IMPBio of the French
Ministry of Research. A part of this work has been done duringa stay of M. Roytberg at LORIA, Nancy,
supported by INRIA. M.Roytberg has been also supported by the Russian Foundation for Basic Research
(projects 03-04-49469, 02-07-90412) and by grants from theRF Ministry of Industry, Science and Technol-
ogy (20/2002, 5/2003) and NWO (Netherlands Science Foundation).

References
[1] A HO, A. V., AND CORASICK, M. J. Efficient string matching: An aid to bibliographic search. Communications of the ACM 18, 6 (1975),

333–340.

[2] A LTSCHUL, S., MADDEN, T., SCHÄFFER, A., ZHANG, J., ZHANG, Z., MILLER , W., AND L IPMAN , D. Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs.Nucleic Acids Research 25, 17 (1997), 3389–3402.

[3] BREJOVA, B., BROWN, D., AND V INAR , T. Optimal spaced seeds for Hidden Markov Models, with application to homologous coding
regions. InProceedings of the 14th Symposium on Combinatorial PatternMatching, Morelia (Mexico)(June 2003), M. C. R. Baeza-Yates,
E. Chavez, Ed., vol. 2676 ofLecture Notes in Computer Science, Springer, pp. 42–54.

[4] BREJOVA, B., BROWN, D., AND V INAR , T. Vector seeds: an extension to spaced seeds allows substantial improvements in sensitivity
and specificity. InProceedings of the 3rd International Workshop in Algorithms in Bioinformatics (WABI), Budapest (Hungary)(September
2003), G. Benson and R. Page, Eds., vol. 2812 ofLecture Notes in Computer Science, Springer.

[5] BREJOVA, B., BROWN, D., AND V INAR , T. Optimal spaced seeds for homologous coding regions.Journal of Bioinformatics and Compu-
tational Biology 1, 4 (Jan 2004), 595–610.

[6] BROWN, D. Optimizing multiple seeds for protein homology search.IEEE Transactions on Computational Biology and Bioinformatics 2, 1
(Jan. 2005), 29 – 38.

[7] BUHLER, J., KEICH, U., AND SUN, Y. Designing seeds for similarity search in genomic DNA. InProceedings of the 7th Annual International
Conference on Computational Molecular Biology (RECOMB03), Berlin (Germany)(April 2003), ACM Press, pp. 67–75.

[8] BURKHARDT, S.,AND K ÄRKK ÄINEN , J. Better filtering with gappedq-grams.Fundamenta Informaticae 56, 1-2 (2003), 51–70. Preliminary
version in Combinatorial Pattern Matching 2001.

[9] CHEN, W., AND SUNG, W.-K. On half gapped seed.Genome Informatics 14(2003), 176–185. preliminary version in the 14th International
Conference on Genome Informatics (GIW).

[10] CHOI, K., AND ZHANG, L. Sensitivity analysis and efficient method for identifying optimal spaced seeds.Journal of Computer and System
Sciences 68(2004), 22–40.

[11] CHOI, K. P., ZENG, F., AND ZHANG, L. Good Spaced Seeds For Homology Search.Bioinformatics 20(2004), 1053–1059.

[12] FINKELSTEIN, A., AND ROYTBERG, M. Computation of biopolymers: A general approach to different problems.BioSystems 30, 1-3 (1993),
1–19.

[13] KEICH, U., LI , M., MA , B., AND TROMP, J. On spaced seeds for similarity search. to appear in Discrete Applied Mathematics, 2002.

[14] KENT, W. J. BLAT–the BLAST-like alignment tool.Genome Research 12(2002), 656–664.

[15] KUCHEROV, G., NOÉ, L., AND PONTY, Y. Estimating seed sensitivity on homogeneous alignments. In Proceedings of the IEEE 4th
Symposium on Bioinformatics and Bioengineering (BIBE 2004), May 19-21, 2004, Taichung (Taiwan)(2004), IEEE Computer Society Press,
pp. 387–394.

[16] KUCHEROV, G., NOÉ, L., AND ROYTBERG, M. Multiseed lossless filtration.IEEE Transactions on Computational Biology and Bioinfor-
matics 2, 1 (Jan. 2005), 51 – 61.

[17] L I , M., MA , B., KISMAN , D., AND TROMP, J. PatternHunter II: Highly sensitive and fast homology search. Journal of Bioinformatics and
Computational Biology(2004). Earlier version in GIW 2003 (International Conference on Genome Informatics).

[18] MA , B., TROMP, J.,AND L I , M. PatternHunter: Faster and more sensitive homology search. Bioinformatics 18, 3 (2002), 440–445.

[19] NOÉ, L.AND KUCHEROV, G. Improved hit criteria for DNA local alignment.BMC Bioinformatics 5, 149 (14 October 2004).

12

[20] SUN, Y., AND BUHLER, J. Designing multiple simultaneous seeds for DNA similarity search. InProceedings of the 8th Annual International
Conference on Computational Molecular Biology (RECOMB04), San Diego (California)(March 2004), ACM Press.

[21] ULLMAN , J. D., AHO, A. V., AND HOPCROFT, J. E.The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, 1974.

[22] XU, J., BROWN, D., LI , M., AND MA , B. Optimizing multiple spaced seeds for homology search. In Proceedings of the 15th Symposium
on Combinatorial Pattern Matching, Istambul (Turkey)(July 2004), vol. 3109 ofLecture Notes in Computer Science, Springer.

[23] YANG, I.-H., WANG, S.-H., CHEN, Y.-H., HUANG, P.-H., YE, L., HUANG, X., AND CHAO, K.-M. Efficient methods for generating
optimal single and multiple spaced seeds. InProceedings of the IEEE 4th Symposium on Bioinformatics andBioengineering (BIBE 2004),
May 19-21, 2004, Taichung (Taiwan)(2004), IEEE Computer Society Press, pp. 411–416.

13

A Proof of Lemma 8

Let π = # −r # be a spaced seed of spanr + 2 and weight2. We prove that the automatonSπ (see
Lemma 6) is reduced, i.e.

(i) all its non-final states are reachable from the initial state< ∅, 0 >;

(ii) any two non-final statesq, q′ are non-equivalent, i.e. there is a wordw = w(q, q′) such that exactly
one of the statesψ(q, w), ψ(q′ , w) is a final state.

(i) Let q =< X, t > be a state of the automatonSπ, and letX = {x1, . . . , xk} andx1 < · · · < xk.
Obviously,xk + t < r + 2. Let s ∈ {0, 1}∗ be an alignment word of lengthxk such that for alli ∈
[1, xk], si = 1 iff ∃j ∈ [1, k], i = xk − xj + 1. Note, that,π1 = #, therefore1 /∈ X andsxk

= 0.
Finally,ψ(< φ, 0 >, s · 1t) = q.

(ii) Let q1 =< X1, t1 > andq2 =< X2, t2 > be non-final states ofSπ. LetX1 = {y1, . . . , ya},X2 =
{z1, . . . , zb}, andy1 < · · · < ya, z1 < · · · < zb.

Assume thatmax{X1} + t1 > max{X2} + t2 and letd = (r + 2) − (max{X1} + t1). Obviously,
ψ(q1, 1

d) is a final state, andψ(q2, 1
d) is not. Now assume thatmax{X1} + t1 = max{X2} + t2. For a

setX ⊆ {1, . . . , r + 1} and a numbert, define a setX{t} byX{t} = {v + t|v ∈ X andv + t < r + 2}.
Let g = max{v|(v + t1 ∈ X1 andv+ t2 /∈ X2) or (v+ t2 ∈ X2 andv+ t1 /∈ X1)} and letd = r+ 1− g
. Thenψ(q1, 0

d · 1) is a final state andψ(q2, 0
d · 1) is not or vice versa. This completes the proof.

B Subset seed automaton

Let π be a subset seed of#-weightw and spans, andr = s − w be the number of non-# positions. We
define a DFASπ recognizing all words ofA∗ matched byπ (see definition of section 3.1). The transition
table ofSπ is stored in an array such that each element describes a state< X, t > of Sπ. Now we define

1. how to compute the array indexInd(q) of a stateq =< X, t >,

2. how to compute valuesψ(q, a) given a stateq and a lettera ∈ A.

B.1 Encoding state indexes

We will need some notation. LetL = {l1, . . . , lr} be a set of all non-# positions inπ (l1 < l2 < · · · < lr).
For a subsetX ⊆ L, let v(X) = v1 . . . vr ∈ {0, 1}

r be a binary vector such thatvi = 1 iff li ∈ X. Let
furthern(X) be the integer corresponding to the binary representationv(X) (read from left to right):

n(X) =

r
∑

j=1

2j−1 · vj.

Definep(t) = max{p | lp < m− t}. Informally, for a given non-final state< X, t >,X can only be a
subset of{l1, . . . , lp(t)}. This implies thatn(X) < 2p(t). Then, the index of a given state{< X, t >} in the
array is defined by

Ind(< X, t >) = n(X) + 2p(t).

This implies that the worst-case size of the array is no more thanw2r (the proof is similar to the proof of
Lemma 7).

14

B.2 Computing transition function ψ(q, a)

We compute valuesψ(< X, t >, a) based on already computed valuesψ(< X ′, t >, a). Let q =< X, t >
be a non-final and reachable state ofSπ, whereX = {l1, . . . , lk} with l1 < l2 · · · < lk andk ≤ r. Let
X ′ = X \ {lk} = {l1, . . . , lk−1} andq′ =< X ′, t >. Then the following lemma holds.

Lemma 10. If q =< X, t > is reachable, thenq′ =< X ′, t > is reachable and has been processed before.

Proof. First prove that< X ′, t > is reachable. If< X, t > is reachable, then< X, 0 > is reachable due
to the definition of transition function fort > 0. Thus, one can find at least one sequenceS ∈ Alk such
that∀i ∈ [1..r], li ∈ X iff π1 · · · πli matchesSlk−li+1 · · ·Slk . For such a sequenceS, one can find a word
S′ = Slk−lk−1+1 · · ·Slk which reaches state< X ′, 0 >. To conclude, if there exists a wordS · 1t that
reaches the state< X, t >, there also exists a wordS′ · 1t that reaches< X ′, t >.

Note that as|S′ · 1t| < |S · 1t|, then a breadth-first computation of states ofSπ always processes state
< X ′, t > before< X, t >.

Now we present how to compute valuesψ(< X, t >, a) from valuesψ(< X ′, t >, a). This is done by
Algorithm B.2 shown below, that we comment on now. Due to implementation choices, we represent a state
q as tripleq = 〈X, kX , t〉, wherekX = max{i|li ∈ X}. Note first that ifa = 1, the transition function
ψ(q, a) can be computed in constant time due to its definition (part a.of Algorithm B.2). If a 6= 1, we have
to

1. retrieve the index ofq′ givenq = 〈X, kX , t〉 (part c. of Algorithm B.2),
2. computeψ(〈X, kX , t〉, a 6= 1) givenψ(〈X ′, kX′ , t〉, a 6= 1) value. (part d. of Algorithm B.2)

1. Note first thatInd(〈X, kX , t〉) = Ind(〈X ′, kX′ , t〉) − 2kX , which can be computed in constant time
sincekX is explicitly stored in the current state.

2. Let

VX(k, t, a 6= 1) =

{

li if li = lk + t+ 1 and a matches πli

∅ otherwise

and

Vk(k, t, a 6= 1) =

{

i if li = lk + t+ 1 and amatches πli

0 otherwise

TablesVX(k, t, a) andVk(k, t, a) can be precomputed in time and spaceO(|A|·m2). Letψ(〈X, kX , t〉, a) =
〈Y, kY , 0〉 andψ(〈X ′, kX′ , t〉, a) = 〈Y ′, kY ′ , 0〉. The setY differs from Y ′ at most with one element.
This element can be computed in constant time using tablesVX , Vk. NamelyY = Y ′ ∪ VX(kX , t, a) and
kY = max(kY ′ , Vk(kX , t, a)).

Note that a final situation arises whenX = ∅. (part b. of Algorithm B.2). One also has to compute two
tablesUX , Uk defined as:

UX(t, a 6= 1) = ∪{x|x ≤ t+ 1 and a matches πx}

Uk(t, a 6= 1) = max{x|x ≤ t+ 1 and a matches πx}

Lemma 11. The transition functionψ(q, a) can be computed in constant time for every reachable stateq
and everya ∈ A.

15

Algorithm 1 : Sπ computation

Data : a seedπ of spanm, ′#′-weightw, and number of jokersr = m− w

Result : an automatonSπ =< Q, q0, qF ,A, ψ >

Q.add(qF);
q0 ← 〈X = ∅, k = 0, t = 0〉 ;
Q.add(q0);
queue.push(q0);
while queue 6= ∅ do
〈X, kX , tX〉 = queue.pop();
for a ∈ A do

/* computeψ(< X, tX >, a) = 〈Y, kY , tY 〉 */
if a = 1 then

tY ← tX + 1;
a kY ← kX ;

Y ← X;
else

if X = ∅ then
b Y ← UX(tX , a);

kY ← Uk(tX , a);

else
/* use already processedψ(< X ′, tX′ >, a) . . . */

c X ′ ← X \ {lkX
};

〈Y ′, kY ′ , tY ′〉 ← ψ(< X ′, t >, a);
/* . . . to computeψ(< X, tX >, a) */

d kY ← max
(

kY ′ , Vk(kX , tX , a)
)

;
Y ← Y ′ ∪ VX(kX , tX , a);

tY ← 0;

if L[kY] + tY ≥ m then
/* < Y, tY > is a final state */
ψ(< X, tX >, a)← qF ;

else
if 〈Y, kY , tY 〉 /∈ Q then

Q.add(〈Y, kY , tY 〉);
queue.push(〈Y, kY , tY 〉);

ψ(< X, tX >, a)← 〈Y, kY , tY 〉;

16

C Training probability transducers

We selected 40 bacterial complete genomes from NCBI:NC 000117.fna, NC000907.fna, NC000909.fna, NC000922.fna,

NC 000962.fna, NC001263.fna, NC001318.fna, NC002162.fna, NC002488.fna, NC002505.fna, NC002516.fna, NC002662.fna,

NC 002678.fna, NC002696.fna, NC002737.fna, NC002927.fna, NC003037.fna, NC003062.fna, NC003112.fna, NC003210.fna,

NC 003295.fna, NC003317.fna, NC003454.fna, NC003551.fna, NC003869.fna, NC003995.fna, NC004113.fna, NC004307.fna,

NC 004342.fna, NC004551.fna, NC004631.fna, NC004668.fna, NC004757.fna, NC005027.fna, NC005061.fna, NC005085.fna,

NC 005125.fna, NC005213.fna, NC005303.fna, NC005363.fna.
YASS [19] has been run on each pair of genomes to detect alignments with E-value at most10−3.

Resulting ungapped regions of length64 or more have been used to train modelsDT1,DT2 andNT by the
maximal likelihood criterion. Table 7 gives theρ function of the probability transducerDT1, that specifies
the probabilities of match (1), transition (h) and transversion (0) at each codon position.

a : 0 h 1

ρ(q0, a, q1) 0.2398 0.2945 0.4657
ρ(q1, a, q2) 0.1351 0.1526 0.7123
ρ(q2, a, q0) 0.1362 0.1489 0.7150

q2q1

q0

ρ(q1,a,q2)

ρ(q2,a,q0)ρ(q0,a,q1)

Table 7: Parameters of theDT1 model

Table 8 specifies the probability of each codon instancea1a2a3 ∈ A
3, used to define the probability

transducerDT2.

a1\a2a3 : 00 0h 01 h0 hh h1 10 1h 11

0 0.01089 0.01329 0.01311 0.01107 0.00924 0.01144 0.01887 0.01946 0.03106
h 0.01022 0.00984 0.01093 0.00956 0.01025 0.01294 0.02155 0.02552 0.03983
1 0.02083 0.02158 0.02554 0.02537 0.02604 0.03776 0.11298 0.16165 0.27915

Table 8: Probability of each codon instance specified by theDT2 model

Finally, Table 9 specifies the probability transducerNT by specifying the fourDT2 models together
with transition probabilities between the initial states of each of these models.

Pr(qi → qj) j = 0 1 2 3

i = 0 0.9053 0.0947 0 0
1 0.1799 0.6963 0.1238 0
2 0 0.2131 0.6959 0.0910
3 0.0699 0.0413 0.1287 0.7601

a1\a2a3 : 00 0h 01 h0 hh h1 10 1h 11

0 0.01577 0.01742 0.01440 0.01511 0.01215 0.01135 0.02502 0.02353 0.02786
q0 : h 0.01478 0.01365 0.01266 0.01348 0.01324 0.01346 0.02815 0.02981 0.03442

1 0.02701 0.02838 0.02600 0.03429 0.03158 0.03406 0.12973 0.17461 0.17809
0 0.00962 0.01241 0.01501 0.00891 0.00753 0.01247 0.01791 0.01841 0.03530

q1 : h 0.00818 0.00766 0.01115 0.00738 0.00952 0.01353 0.01828 0.02978 0.04405
1 0.01946 0.01682 0.02344 0.02456 0.02668 0.03890 0.12113 0.18170 0.26020
0 0.00406 0.00692 0.00954 0.00501 0.00372 0.00841 0.01034 0.01129 0.03430

q2 : h 0.00391 0.00396 0.00758 0.00364 0.00707 0.01473 0.01288 0.01975 0.05058
1 0.01250 0.01627 0.02416 0.01419 0.02071 0.04427 0.10014 0.15311 0.39698
0 0.00302 0.00267 0.00560 0.00289 0.00249 0.00807 0.00740 0.00710 0.03195

q3 : h 0.00297 0.00261 0.00355 0.00299 0.00271 0.00935 0.00924 0.01148 0.04296
1 0.01035 0.01125 0.02204 0.00930 0.01289 0.04235 0.05304 0.08163 0.59810

Table 9: Probabilities specified by theNT model

17

