3,355 research outputs found

    High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation

    Get PDF
    Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence

    Past East Asian monsoon evolution controlled by paleogeography, not CO2

    Get PDF
    The East Asian monsoon plays an integral role in human society, yet its geological history and controlling processes are poorly understood. Using a general circulation model and geological data, we explore the drivers controlling the evolution of the monsoon system over the past 150 million years. In contrast to previous work, we find that the monsoon is controlled primarily by changes in paleogeography, with little influence from atmospheric CO2. We associate increased precipitation since the Late Cretaceous with the gradual uplift of the Himalayan-Tibetan region, transitioning from an ITCZ-dominated monsoon to a sea breeze–dominated monsoon. The rising region acted as a mechanical barrier to cold and dry continental air advecting into the region, leading to increasing influence of moist air from the Indian Ocean/South China Sea. We show that, apart from a dry period in the middle Cretaceous, a monsoon system has existed in East Asia since at least the Early Cretaceous

    A Southern Hemisphere record of global trace-metal drawdown and orbital modulation of organic-matter burial across the Cenomanian–Turonian boundary (Ocean Drilling Program Site 1138, Kerguelen Plateau)

    Get PDF
    Despite its assumed global nature, there are very few detailed stratigraphic records of the late Cenomanian to the early Turonian Oceanic Anoxic Event 2 from the Southern Hemisphere. A highly resolved record of environmental changes across the Cenomanian\u2013Turonian boundary interval is presented from Ocean Drilling Program Site 1138 on the central Kerguelen Plateau (southern Indian Ocean). The new data lead to three key observations. Firstly, detailed biostratigraphy and chemostratigraphy indicate that the record of Oceanic Anoxic Event 2 is not complete, with a hiatus spanning the onset of the event. A decrease in glauconite and highly weathered clays after the onset of Oceanic Anoxic Event 2 marks the end of the hiatus interval, which can be explained by a relative sea-level rise that increased sediment accommodation space on the Kerguelen Plateau margin. This change in depositional environment controlled the timing of the delayed peak in organic-matter burial during Oceanic Anoxic Event 2 at Site 1138 compared with other Oceanic Anoxic Event 2 locations worldwide. A second key observation is the presence of cyclic fluctuations in the quantity and composition of organic matter being buried on the central Kerguelen Plateau throughout the latter stages of Oceanic Anoxic Event 2 and the early Turonian. A close correspondence between organic matter, sedimentary elemental compositions and sediments recording sea-floor oxygenation suggests that the cycles were mainly productivity-driven phenomena. Available age-control points constrain the periodicity of the coupled changes in sedimentary parameters to ca 20 to 70 ka, suggesting a link between carbon burial and astronomically forced climatic variations (precession or obliquity) in the Southern Hemisphere mid-latitudes both during, and after, Oceanic Anoxic Event 2: fluctuations that were superimposed on the impact of global-scale processes. Finally, trace-metal data from the black-shale unit at Site 1138 provide the first evidence from outside of the proto-North Atlantic region for a global drawdown of seawater trace-metal (Mo) inventories during Oceanic Anoxic Event 2

    Manageability of Future Internet Virtual Networks from a Practical Viewpoint

    Get PDF
    International audienceThe Autonomic Internet project approach relies on abstractions and distributed systems of a five plane solution for the provision of Future Internet Services (OSKMV): Orchestration, Service Enablers, Knowledge, Management and Virtualisation Planes. This paper presents a practical viewpoint of the manageability of virtual networks, exercising the components and systems that integrate this approach and that are being validated. This paper positions the distributed systems and networking services that integrate this solution, focusing on the provision of Future Internet services for self-configuration and self- performance management scenes

    Arabidopsis defense against Botrytis cinerea : chronology and regulation deciphered by high-resolution temporal transcriptomic analysis

    Get PDF
    Transcriptional reprogramming forms a major part of a plant’s response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea

    Great Expectations: Plans and Predictions for New Horizons Encounter with Kuiper Belt Object 2014 MU69 ('Ultima Thule')

    Full text link
    The New Horizons encounter with the cold classical Kuiper Belt object (KBO) 2014 MU69 (informally named 'Ultima Thule,' hereafter Ultima) on 1 January 2019 will be the first time a spacecraft has ever closely observed one of the free-orbiting small denizens of the Kuiper Belt. Related to but not thought to have formed in the same region of the Solar System as the comets that been explored so far, it will also be the largest, most distant, and most primitive body yet visited by spacecraft. In this letter we begin with a brief overview of cold classical KBOs, of which Ultima is a prime example. We give a short preview of our encounter plans. We note what is currently known about Ultima from earth-based observations. We then review our expectations and capabilities to evaluate Ultima's composition, surface geology, structure, near space environment, small moons, rings, and the search for activity

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article
    corecore