16 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Effect of lung recruitment and titrated Positive End-Expiratory Pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome - A randomized clinical trial

    No full text
    IMPORTANCE: The effects of recruitment maneuvers and positive end-expiratory pressure (PEEP) titration on clinical outcomes in patients with acute respiratory distress syndrome (ARDS) remain uncertain. OBJECTIVE: To determine if lung recruitment associated with PEEP titration according to the best respiratory-system compliance decreases 28-day mortality of patients with moderate to severe ARDS compared with a conventional low-PEEP strategy. DESIGN, SETTING, AND PARTICIPANTS: Multicenter, randomized trial conducted at 120 intensive care units (ICUs) from 9 countries from November 17, 2011, through April 25, 2017, enrolling adults with moderate to severe ARDS. INTERVENTIONS: An experimental strategy with a lung recruitment maneuver and PEEP titration according to the best respiratory-system compliance (n = 501; experimental group) or a control strategy of low PEEP (n = 509). All patients received volume-assist control mode until weaning. MAIN OUTCOMES AND MEASURES: The primary outcome was all-cause mortality until 28 days. Secondary outcomes were length of ICU and hospital stay; ventilator-free days through day 28; pneumothorax requiring drainage within 7 days; barotrauma within 7 days; and ICU, in-hospital, and 6-month mortality. RESULTS: A total of 1010 patients (37.5% female; mean [SD] age, 50.9 [17.4] years) were enrolled and followed up. At 28 days, 277 of 501 patients (55.3%) in the experimental group and 251 of 509 patients (49.3%) in the control group had died (hazard ratio [HR], 1.20; 95% CI, 1.01 to 1.42; P = .041). Compared with the control group, the experimental group strategy increased 6-month mortality (65.3% vs 59.9%; HR, 1.18; 95% CI, 1.01 to 1.38; P = .04), decreased the number of mean ventilator-free days (5.3 vs 6.4; difference, −1.1; 95% CI, −2.1 to −0.1; P = .03), increased the risk of pneumothorax requiring drainage (3.2% vs 1.2%; difference, 2.0%; 95% CI, 0.0% to 4.0%; P = .03), and the risk of barotrauma (5.6% vs 1.6%; difference, 4.0%; 95% CI, 1.5% to 6.5%; P = .001). There were no significant differences in the length of ICU stay, length of hospital stay, ICU mortality, and in-hospital mortality. CONCLUSIONS AND RELEVANCE: In patients with moderate to severe ARDS, a strategy with lung recruitment and titrated PEEP compared with low PEEP increased 28-day all-cause mortality. These findings do not support the routine use of lung recruitment maneuver and PEEP titration in these patients. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01374022

    NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics

    No full text
    Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data
    corecore