616 research outputs found
Kinetic Energy Density Study of Some Representative Semilocal Kinetic Energy Functionals
There is a number of explicit kinetic energy density functionals for
non-interacting electron systems that are obtained in terms of the electron
density and its derivatives. These semilocal functionals have been widely used
in the literature. In this work we present a comparative study of the kinetic
energy density of these semilocal functionals, stressing the importance of the
local behavior to assess the quality of the functionals. We propose a quality
factor that measures the local differences between the usual orbital-based
kinetic energy density distributions and the approximated ones, allowing to
ensure if the good results obtained for the total kinetic energies with these
semilocal functionals are due to their correct local performance or to error
cancellations. We have also included contributions coming from the laplacian of
the electron density to work with an infinite set of kinetic energy densities.
For all the functionals but one we have found that their success in the
evaluation of the total kinetic energy are due to global error cancellations,
whereas the local behavior of their kinetic energy density becomes worse than
that corresponding to the Thomas-Fermi functional.Comment: 12 pages, 3 figure
Theoretical study of electronic transport through a small quantum dot with a magnetic impurity
We model a small quantum dot with a magnetic impurity by the Anderson
Hamiltonian with a supplementary exchange interaction term. The transport
calculations are performed by means of the Green functions within the equation
of motion scheme, in which two decoupling procedures are proposed, for high and
low temperatures, respectively. The paper focuses on the charge fluctuations
for such a system, aspect not addressed before, as well as on the Kondo
resonance. We show a specific role of the excited state, which can be observed
in transport and in spin-spin correlations. Our studies show on a new many-body
feature of the phase shift of transmitted electrons, which is manifested in a
specific dip. In the Kondo regime, our calculations complement existing
theoretical results. The system shows three Kondo peaks in the density of
states: one at the Fermi energy and two side peaks, at a distance corresponding
to the singlet-triplet level spacing. The existence of the central peak is
conditioned by a degenerate state (the triplet) below the Fermi energy.Comment: 12 pages, 4 figure
Local Behavior of the First-Order Gradient Correction to the Thomas-Fermi Kinetic Energy Functional
The first order gradient correction to the Thomas-Fermi functional, proposed
by Haq, Chattaraj and Deb (Chem. Phys. Lett. vol. 81, 8031, 1984) has been
studied by evaluating both the total kinetic energy and the local kinetic
energy density. For testing the kinetic energy density we evaluate its
deviation from an exact result through a quality factor, a parameter that
reflects the quality of the functionals in a better way than their relative
errors. The study is performed on two different systems: light atoms (up to
Z=18) and a noninteracting model of fermions confined in a Coulombic-type
potential. It is found than this approximation gives very low relative errors
and a better local behavior than any of the usual generalized gradient
approximation semilocal kinetic density functionals.Comment: 7 pages, 2 tables, 4 figure
Angle-dependence of quantum oscillations in YBa2Cu3O6.59 shows free spin behaviour of quasiparticles
Measurements of quantum oscillations in the cuprate superconductors afford a
new opportunity to assess the extent to which the electronic properties of
these materials yield to a description rooted in Fermi liquid theory. However,
such an analysis is hampered by the small number of oscillatory periods
observed. Here we employ a genetic algorithm to globally model the field,
angular, and temperature dependence of the quantum oscillations observed in the
resistivity of YBa2Cu3O6.59. This approach successfully fits an entire data set
to a Fermi surface comprised of two small, quasi-2-dimensional cylinders. A key
feature of the data is the first identification of the effect of Zeeman
splitting, which separates spin-up and spin-down contributions, indicating that
the quasiparticles in the cuprates behave as nearly free spins, constraining
the source of the Fermi surface reconstruction to something other than a
conventional spin density wave with moments parallel to the CuO2 planes.Comment: 8 pages, 4 figure
Toward a clinical practice guide in pharmacogenomics testing for functional polymorphisms of drug-metabolizing enzymes. Gene/drug pairs and barriers perceived in Spain
The development of clinica lpractice recommendations or
guidelines for the clinical use of biomarkers is an issue of great importance withr regard to adverse drug reactions.The poten-tial of pharmacogenomicbiomarkers has been extensively investigated in recent years.However,several barriers to implementing the use of pharmacogenomics testing exist.We conducted a survey among members of the Spanish Societies of Pharmacology and Clinical Pharmacology to obtain information about the perception of such barriers and to compare the perceptions of participants about the relative importance of majorgene/drug pairs.Of 11 potential barriers,the highest importance was attributed to lack of institutional support for pharmacogenomic stesting,and to the issues related to the lack of guidelines.Of the proposed gene/drug pairs the highest importance was assigned to HLA-B/abacavir, UGT1A1/irinotecan, and CYP2D6/tamoxifen.In this perspective article,we compare the relative importance of 29 gene/drugpairs in the Spanish study with that of the same pairs in the American Society for Clinical Pharmacology and Therapeutic sstudy,and we provide suggestions and areas of focus to develop a guide for clinical practice in pharmacogenomics testingThe work in the author’s laboratory is financed by Grants
PS09/00943, PS09/00469, RETICS RIRAAF RD07/0064/0016,
and CIBERehd from Instituto de Salud CarlosIII,Madrid,
Spain, and by Grants GR10068 from Junta de Extremadura,
Spain. Financed in part with FEDER funds from the European
Unio
Lentiviral Vector-Mediated Correction of a Mouse Model of Leukocyte Adhesion Deficiency Type I
Leukocyte adhesion deficiency type I (LAD-I) is a primary immunodeficiency caused by mutations in the ITGB2 gene and is characterized by recurrent and life-threatening bacterial infections. These mutations lead to defective or absent expression of β2 integrins on the leukocyte surface, compromising adhesion and extravasation at sites of infection. Three different lentiviral vectors (LVs) conferring ubiquitous or preferential expression of CD18 in myeloid cells were constructed and tested in human and mouse LAD-I cells. All three hCD18-LVs restored CD18 and CD11a membrane expression in LAD-I patient-derived lymphoblastoid cells. Corrected cells recovered the ability to aggregate and bind to sICAM-1 after stimulation. All vectors induced stable hCD18 expression in hematopoietic cells from mice with a hypomorphic Itgb2 mutation (CD18(HYP)), both in vitro and in vivo after transplantation of corrected cells into primary and secondary CD18(HYP) recipients. hCD18(+) hematopoietic cells from transplanted CD18(HYP) mice also showed restoration of mCD11a surface co-expression. The analysis of in vivo neutrophil migration in CD18(HYP) mice subjected to two different inflammation models demonstrated that the LV-mediated gene therapy completely restored neutrophil extravasation in response to inflammatory stimuli. Finally, these vectors were able to correct the phenotype of human myeloid cells derived from CD34(+) progenitors defective in ITGB2 expression. These results support for the first time the use of hCD18-LVs for the treatment of LAD-I patients in clinical trials
Magneto-transport in periodic and quasiperiodic arrays of mesoscopic rings
We study theoretically the transmission properties of serially connected
mesoscopic rings threaded by a magnetic flux. Within a tight-binding formalism
we derive exact analytical results for the transmission through periodic and
quasiperiodic Fibonacci arrays of rings of two different sizes. The role played
by the number of scatterers in each arm of the ring is analyzed in some detail.
The behavior of the transmission coefficient at a particular value of the
energy of the incident electron is studied as a function of the magnetic flux
(and vice versa) for both the periodic and quasiperiodic arrays of rings having
different number of atoms in the arms. We find interesting resonance properties
at specific values of the flux, as well as a power-law decay in the
transmission coefficient as the number of rings increases, when the magnetic
field is switched off. For the quasiperiodic Fibonacci sequence we discuss
various features of the transmission characteristics as functions of energy and
flux, including one special case where, at a special value of the energy and in
the absence of any magnetic field, the transmittivity changes periodically as a
function of the system size.Comment: 9 pages with 7 .eps figures included, submitted to PR
- …
