12 research outputs found

    Probing nonlocal effects in metals with graphene plasmons

    Get PDF
    In this paper we analyze the effects of nonlocality on the optical properties of a system consisting of a thin metallic film separated from a graphene sheet by a hexagonal boron nitride (hBN) layer. We show that nonlocal effects in the metal have a strong impact on the spectrum of the surface plasmon-polaritons on graphene. If the graphene sheet is shaped into a grating, we show that the extinction curves can be used to shed light on the importance of nonlocal effects in metals. Therefore, graphene surface plasmons emerge as a tool for probing nonlocal effects in metallic nanostructures, including thin metallic films. As a byproduct of our study, we show that nonlocal effects lead to smaller losses for the graphene plasmons than what is predicted by a local calculation. We show that these effects can be very well mimicked using a local theory with an effective spacer thickness larger than its actual value.The authors thank SĂ©bastien Nanot and Itai Epstein for valuable discussions and comments. E.J.C.D., Yu.V.B. and N.M.R.P. acknowledge support from the European Commission through the project GrapheneDriven Revolutions in ICT and Beyond (Ref. No. 785219), and from the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Financing UID/FIS/04650/2013. E.J.C.D. acknowledges FCT for the grant CFUM-BI-14/2016. D.A.I. acknowledges the FPI grant BES-2014-068504. F.H.L.K. acknowledges ïŹnancial support from the Government of Catalonia trough the SGR grant (2014-SGR-1535), and from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, CERCA Programme / Generalitat de Catalunya and the Mineco grants Ramn y Cajal (RYC-2012-12281) and Plan Nacional (FIS201347161-P and FIS2014-59639-JIN). Furthermore, the research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no.696656 Graphene Flagship, the ERC starting grant (307806, CarbonLight), and project GRASP (FP7-ICT-2013-613024-GRASP). N. A. M. is a VILLUM Investigator supported by VILLUM FONDEN (grant No. 16498). Center for Nano Optics is ïŹnancially supported by the University of Southern Denmark (SDU 2020 funding). Center for Nanostructured Graphene is supported by the Danish National Research Foundation (DNRF103).info:eu-repo/semantics/publishedVersio

    Electron quantum metamaterials in van der Waals heterostructures

    Full text link
    In recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques -- for example in the unique coloring of butterfly wings -- to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer sub-electron wavelength (as well as wavelength-scale) structuring of electronic matter, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures -- e.g., mechanical pick-up/transfer assembly -- atomic scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length-scales (such as electron wavelength, screening length, and electron mean free path). Yet electronic metamaterials promise far richer categories of behavior than those found in conventional optical metamaterial technologies. This is because unlike photons that scarcely interact with each other, electrons in subwavelength structured metamaterials are charged, and strongly interact. As a result, an enormous variety of emergent phenomena can be expected, and radically new classes of interacting quantum metamaterials designed

    Confining light to the atomic scale

    Get PDF
    A graphene sheet near a metal nanoantenna squeezes infrared photons into a subnanometric gap, pushing the limits of nanophotonics. © 2018 The Author(s)

    Giant enhancement of third-harmonic generation in graphene-metal heterostructures

    Full text link
    Nonlinear nanophotonics leverages engineered nanostructures to funnel light into small volumes and intensify nonlinear optical processes with spectral and spatial control. Due to its intrinsically large and electrically tunable nonlinear optical response, graphene is an especially promising nanomaterial for nonlinear optoelectronic applications. Here we report on exceptionally strong optical nonlinearities in graphene-insulator-metal heterostructures, demonstrating an enhancement by three orders of magnitude in the third-harmonic signal compared to bare graphene. Furthermore, by increasing the graphene Fermi energy through an external gate voltage, we find that graphene plasmons mediate the optical nonlinearity and modify the third-harmonic signal. Our findings show that graphene-insulator-metal is a promising heterostructure for optically-controlled and electrically-tunable nano-optoelectronic components
    corecore