220 research outputs found

    Rechargeable organic–air redox flow batteries

    Get PDF
    A rechargeable organic–air flow battery based on aqueous electrolytes is proposed and tests are conducted in a divided cell with a three-electrode configuration. Quinoxaline is used as the negative redox couple due to its low electrode potential of c.a. −0.9 V vs. Hg|HgO in aqueous electrolytes. High-surface-area nickel mesh and manganese-dioxide electrodes were employed for oxygen evolution and reduction, respectively, together with a low-cost hydroxide doped polybenzimidazole (m-PBI) separator (c.a. 20 ÎŒm). In typical alkaline electrolytes (2 M NaOH), the open-circuit voltage of the flow battery was c.a. 0.95 V, which is comparable to existing organic-based batteries. The average charge and discharge cell voltage ranges at 5–10 mA cm−2 were 1.7–1.95 V and 0.4–0.7 V, respectively. Despite using low-cost materials, average coulombic and energy efficiencies of the batteries were c.a. 81 and 25%, respectively, at 7.5 mA cm−2 over 20 cycles

    Peptide-folding triggered phase separation and lipid membrane destabilization in cholesterol-rich lipid vesicles.

    Get PDF
    Liposome-based drug delivery systems are widely used to improve drug pharmacokinetics but can suffer from slow and unspecific release of encapsulated drugs. Membrane-active peptides, based on sequences derived or inspired from antimicrobial peptides (AMPs), could offer means to trigger and control the release. Cholesterol is used in most liposomal drug delivery systems (DDS) to improve the stability of the formulation, but the activity of AMPs on cholesterol-rich membranes tends to be very low, complicating peptide-triggered release strategies. Here, we show a de novo designed AMP-mimetic peptide that efficiently triggers content release from cholesterol-containing lipid vesicles when covalently conjugated to headgroup-functionalized lipids. Binding to vesicles induces peptide folding and triggers a lipid phase separation, which in the presence of cholesterol results in high local peptide concentrations at the lipid bilayer surface and rapid content release. We anticipate that these results will facilitate the development of peptide-based strategies for controlling and triggering drug release from liposomal drug delivery systems

    Electroactive biomimetic collagen-silver nanowire composite scaffolds

    Get PDF
    Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm-2 and a charge injection capacity of 0.3 mC cm-2, which is on par with bioelectrodes used in the clinic. The mechanical properties of the materials are similar to soft tissues with a dynamic elastic modulus within the lower kPa range. The nanocomposites also support proliferation of embryonic cardiomyocytes while inhibiting the growth of both Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis. The developed collagen/AgNW composites thus represent a highly attractive bioelectrode and scaffold material for a wide range of biomedical applications

    Linear multivariate evaluation models for spatial perception of soundscape

    Get PDF
    Soundscape is a sound environment that emphasizes the awareness of auditory perception and social or cultural understandings. The case of spatial perception is significant to soundscape. However, previous studies on the auditory spatial perception of the soundscape environment have been limited. Based on 21 native binaural-recorded soundscape samples and a set of auditory experiments for subjective spatial perception (SSP), a study of the analysis among semantic parameters, the inter-aural-cross-correlation coefficient (IACC), A-weighted-equal sound-pressure-level (Leq), dynamic (D) and SSP is introduced to verify the independent effect of each parameter and to re-determine some of their possible relationships. The results show that the more noisiness the audience perceived, the worse spatial awareness they received, while the closer and more directional the sound source image variations, dynamics and numbers of sound sources in the soundscape are, the better the spatial awareness would be. Thus, the sensations of roughness, sound intensity, transient dynamic and the values of Leq and IACC have a suitable range for better spatial perception. A better spatial awareness seems to promote the preference slightly for the audience. Finally, setting SSPs as functions of the semantic parameters and Leq-D-IACC, two linear multivariate evaluation models of subjective spatial perception are proposed

    Enhancing Nanoparticle-Based Visible Detection by Controlling the Extent of Aggregation

    Get PDF
    Visible indication based on the aggregation of colloidal nanoparticles (NPs) is highly advantageous for rapid on-site detection of biological entities, which even untrained persons can perform without specialized instrumentation. However, since the extent of aggregation should exceed a certain minimum threshold to produce visible change, further applications of this conventional method have been hampered by insufficient sensitivity or certain limiting characteristics of the target. Here we report a signal amplification strategy to enhance visible detection by introducing switchable linkers (SLs), which are designed to lose their function to bridge NPs in the presence of target and control the extent of aggregation. By precisely designing the system, considering the quantitative relationship between the functionalized NPs and SLs, highly sensitive and quantitative visible detection is possible. We confirmed the ultrahigh sensitivity of this method by detecting the presence of 20 fM of streptavidin and fewer than 100 CFU/mL of Escherichia coli

    Mechanisms of Vascular Dysfunction in COPD and Effects of a Novel Soluble Epoxide Hydrolase Inhibitor in Smokers.

    Get PDF
    BACKGROUND: Smoking and COPD are risk factors for cardiovascular disease, and the pathogenesis may involve endothelial dysfunction. We tested the hypothesis that endothelium-derived epoxyeicosatrienoic acid (EET)-mediated endothelial function is impaired in patients with COPD and that a novel soluble epoxide hydrolase inhibitor, GSK2256294, attenuates EET-mediated endothelial dysfunction in human resistance vessels both in vitro and in vivo. METHODS: Endogenous and stimulated endothelial release of EETs was assessed in 12 patients with COPD, 11 overweight smokers, and two matched control groups, using forearm plethysmography with intraarterial infusions of fluconazole, bradykinin, and the combination. The effects of GSK2256294 on EET-mediated vasodilation in human resistance arteries were assessed in vitro and in vivo in a phase I clinical trial in healthy overweight smokers. RESULTS: Compared with control groups, there was reduced vasodilation with bradykinin (P = .005), a blunted effect of fluconazole on bradykinin-induced vasodilation (P = .03), and a trend toward reduced basal EET/dihydroxyepoxyeicosatrienoic acid ratio in patients with COPD (P = .08). A similar pattern was observed in overweight smokers. In vitro, 10 ΌM GSK2256294 increased 11,12-EET-mediated vasodilation compared with vehicle (90% ± 4.2% vs 72.6% ± 6.2% maximal dilatation) and shifted the bradykinin half-maximal effective concentration (EC50) (-8.33 ± 0.172 logM vs -8.10 ± 0.118 logM; P = .001 for EC50). In vivo, 18 mg GSK2256294 improved the maximum bradykinin response from 338% ± 46% before a dose to 566% ± 110% after a single dose (P = .02) and to 503% ± 123% after a chronic dose (P = .003). CONCLUSIONS: GSK2256294 attenuates smoking-related EET-mediated endothelial dysfunction, suggesting potential therapeutic benefits in patients with COPD. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01762774; URL: www.clinicaltrials.gov.This work was supported by GSK [SEH114068] and Innovate UK (ERICA Consortium 10037625), the Wellcome Trust grant numbers 100780/Z/12/Z, and WT103782AIA awarded to LY, and DEN respectively; the Raymond and Beverley Sackler fellowship awarded to LY; National Institute for Health Research funding awarded to IBW, and JC in the Cambridge Comprehensive Biomedical Research, and the British Heart Foundation grant numbers CH/0 9/002, and RG66885 RCZA/008 awarded to DEN, and IBW. JLG and ZA are funded by the Medical Research Council (Medical Research Council Lipid Profiling and Signalling, MC UP A90 1006 & Lipid Dynamics and Regulation, MC PC 130 30)
    • 

    corecore