481 research outputs found
Systems approaches and algorithms for discovery of combinatorial therapies
Effective therapy of complex diseases requires control of highly non-linear
complex networks that remain incompletely characterized. In particular, drug
intervention can be seen as control of signaling in cellular networks.
Identification of control parameters presents an extreme challenge due to the
combinatorial explosion of control possibilities in combination therapy and to
the incomplete knowledge of the systems biology of cells. In this review paper
we describe the main current and proposed approaches to the design of
combinatorial therapies, including the empirical methods used now by clinicians
and alternative approaches suggested recently by several authors. New
approaches for designing combinations arising from systems biology are
described. We discuss in special detail the design of algorithms that identify
optimal control parameters in cellular networks based on a quantitative
characterization of control landscapes, maximizing utilization of incomplete
knowledge of the state and structure of intracellular networks. The use of new
technology for high-throughput measurements is key to these new approaches to
combination therapy and essential for the characterization of control
landscapes and implementation of the algorithms. Combinatorial optimization in
medical therapy is also compared with the combinatorial optimization of
engineering and materials science and similarities and differences are
delineated.Comment: 25 page
Characterization, by size, density, osmotic fragility, and immunoaffinity, of acetylcholine- and vasoactive intestinal polypeptide-containing storage particles from myenteric neurones of the guinea-pig.
Abstract: When cytoplasmic extracts of guinea-pig myenteric neurones are submitted to centrifugal density gradient fractionation in a zonal rotor acetylcholine is bimodally distributed in the gradient, in a peak (I) rich in synaptic vesicles of the classic type and in a denser peak (II/VI) rich in densecored vesicles and vasoactive intestinal polypeptide (VIP). The putative stable synaptic vesicle markers synaptophysin (p38), vesicular proteoglycan, and Mg2+-activated ATPase were also bimodally distributed, with a peak coincident with peak I and another, broader peak embracing peak II/VI, and neighbouring peaks of other neuropeptides resolved from peak II/VI by the density gradient separation procedure used. To establish whether the stable markers, acetylcholine and VIP in peak II/VI were present in one particle or several, attempts were made to separate them by particle-exclusion chromatography and differential osmotic fragility. These were unsuccessful, leading us to conclude that the storage particles in peak II/VI contain both neurotransmitters and all three putative stable synaptic vesicle markers. It is suggested that such particles are the counterparts, in cholinergic neurones of the myenteric plexus, of the dense-cored, enkephalin- and noradrenaline-containing vesicles of certain adrenergic neurones and, like the latter, may exist in a precursor–product relationship with the classic synaptic vesicles containing the small-molecular-mass transmitters and found in the same nerve terminals
Calcium uptake and protein phosphorylation in myenteric neurons, like the release of vasoactive intestinal polypeptide and acetylcholine, are frequency dependent.
Abstract: The mechanism of the electrical-to-chemical decoding involved in the preferential release of the transmitters acetylcholine and vasoactive intestinal polypeptide (VIP) by electrical field stimulation at low (5 Hz) and high (50 Hz) frequencies was studied in superfused myenteric neurons. The stimulation-induced uptake of 45Ca2+ accompanying high frequency stimulation was markedly reduced by 10 μM nifedipine, a specific blocker of l-type voltage-sensitive Ca2+ channels (VSCCs), as was also the preferential high-frequency release of VIP. By contrast, the 45Ca2+ uptake during low-frequency stimulation was somewhat lower per pulse, and neither this uptake nor the preferential release of acetylcholine occurring at this frequency was significantly reduced by nifedipine. These findings suggest that the release of acetylcholine and VIP involve different VSCCs. The pattern of in vitro protein thiophosphorylation in tissue extracts of differentially stimulated myenteric neurons involved polypeptides of 205, 173, 86, 73, 57, 54, 46, 32, 28, and 24 kDa and was also markedly stimulus and nifedipine dependent. This suggests that different phosphoproteins are involved during the frequency-dependent activation of the different Ca2+ channels and exocytotic mechanisms
A peptide with N-terminal histidine and C-terminal isoleucine amide (PHI) and vasoactive intestinal peptide (VIP) are copackaged in myenteric neurones of the guinea pig ileum.
When cytoplasmic extracts of the myenteric plexus of guinea pig ileum are submitted to centrifugal density gradient separation in a zonal rotor, conditions which separate storage particles containing substance P, somatostatin and VIP from each other, PHI copurifies with VIP. The two immunoreactivities cannot be separated by particle exclusion chromatography, which depends on size rather than density. It is concluded that the posttranslational cleavage of the propeptide or precursor to PHI and VIP occurs after packaging into these storage particles
A network-based target overlap score for characterizing drug combinations: High correlation with cancer clinical trial results
Drug combinations are highly efficient in systemic treatment of complex multigene diseases such as cancer, diabetes, arthritis and hypertension. Most currently used combinations were found in empirical ways, which limits the speed of discovery for new and more effective combinations. Therefore, there is a substantial need for efficient and fast computational methods. Here, we present a principle that is based on the assumption that perturbations generated by multiple pharmaceutical agents propagate through an interaction network and can cause unexpected amplification at targets not immediately affected by the original drugs. In order to capture this phenomenon, we introduce a novel Target Overlap Score (TOS) that is defined for two pharmaceutical agents as the number of jointly perturbed targets divided by the number of all targets potentially affected by the two agents. We show that this measure is correlated with the known effects of beneficial and deleterious drug combinations taken from the DCDB, TTD and Drugs.com databases. We demonstrate the utility of TOS by correlating the score to the outcome of recent clinical trials evaluating trastuzumab, an effective anticancer agent utilized in combination with anthracycline- and taxane-based systemic chemotherapy in HER2-receptor (erb-b2 receptor tyrosine kinase 2) positive breast cancer. © 2015 Ligeti et al
Local Difference Measures between Complex Networks for Dynamical System Model Evaluation
Acknowledgments We thank Reik V. Donner for inspiring suggestions that initialized the work presented herein. Jan H. Feldhoff is credited for providing us with the STARS simulation data and for his contributions to fruitful discussions. Comments by the anonymous reviewers are gratefully acknowledged as they led to substantial improvements of the manuscript.Peer reviewedPublisher PD
Benign follicular tumors
Benign follicular tumors comprise a large and heterogeneous group of neoplasms that share a common histogenesis and display morphological features resembling one or several portions of the normal hair follicle, or recapitulate part of its embryological development. Most cases present it as clinically nondescript single lesions and essentially of dermatological relevance. Occasionally, however, these lesions be multiple and represent a cutaneous marker of complex syndromes associated with an increased risk of visceral neoplasms. In this article, the authors present the microscopic structure of the normal hair follicle as a basis to understand the type and level of differentiation of the various follicular tumors. The main clinicopathological features and differential diagnosis of benign follicular tumors are then discussed, including dilated pore of Winer, pilar sheath acanthoma, trichoadenoma, trichilemmoma, infundibuloma, proliferating trichilemmal cyst/tumor, trichoblastoma and its variants, pilomatricoma, trichodiscoma/fibrofolliculoma, neurofollicular hamartoma and trichofolliculoma. In addition, the main syndromes presenting with multiple follicular tumors are also discussed, namely Cowden, Birt-Hogg-Dubé, Rombo and Bazex-Dupré-Christol syndromes, as well as multiple tumors of follicular infundibulum (infundibulomatosis) and multiple trichoepitheliomas. Although the diagnosis of follicular tumors relies on histological examination, we highlight the importance of their knowledge for the clinician, especially when in presence of patients with multiple lesions that may be the cutaneous marker of a cancer-prone syndrome. The dermatologist is therefore in a privileged position to recognize these lesions, which is extremely important to provide further propedeutic, appropriate referral and genetic counseling for these patients.info:eu-repo/semantics/publishedVersio
Bilateral inhibition of HAUSP deubiquitinase by a viral interferon regulatory factor protein
Herpesvirus-associated ubiquitin specific protease (HAUSP) regulates the stability of p53 and MDM2, implicating HAUSP as a therapeutic target for tuning p53-mediated anti-tumor activity. Here, we report the structural analysis of HAUSP with Kaposi’s sarcoma-associated herpesvirus vIRF4 and the discovery of two vIRF4-derived peptides, vif1 and vif2, as potent and selective HAUSP antagonists. This analysis reveals a bilateral belt-type interaction resulting in inhibition of HAUSP. The vif1 peptide binds the HAUSP TRAF domain, competitively blocking substrate binding, while the vif2 peptide binds both the HAUSP TRAF and catalytic domains, robustly suppressing its deubiquitination activity. Consequently, peptide treatments comprehensively blocked HAUSP, leading to p53-dependent cell cycle arrest and apoptosis in culture and tumor regression in xenograft mouse model. Thus, the virus has developed a unique molecular strategy to target the HAUSP-MDM2-p53 pathway, and these virus-derived short peptides represent biologically active HAUSP antagonists
Photoreceptor Cell Death, Proliferation and Formation of Hybrid Rod/S-Cone Photoreceptors in the Degenerating STK38L Mutant Retina
A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7–14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene
- …
