16 research outputs found
The vascular bone marrow niche influences outcome in chronic myeloid leukemia via the E-selectin - SCL/TAL1-CD44 axis.
The endosteal bone marrow niche and vascular endothelial cells provide sanctuaries for leukemic cells. In murine chronic myeloid leukemia (CML) CD44 on leukemia cells and E-selectin on bone marrow endothelium are essential mediators for the engraftment of leukemic stem cells. We hypothesized that non-adhesion of CML-initiating cells to E-selectin on the bone marrow endothelium may lead to superior eradication of leukemic stem cells in CML after treatment with imatinib than imatinib alone. Indeed, here we show that treatment with the E-selectin inhibitor GMI-1271 in combination with imatinib prolongs survival of mice with CML via decreased contact time of leukemia cells with bone marrow endothelium. Non-adhesion of BCR-ABL1(+) cells leads to an increase of cell cycle progression and an increase of expression of the hematopoietic transcription factor and proto-oncogene Scl/Tal1 in leukemia-initiating cells. We implicate SCL/TAL1 as an indirect phosphorylation target of BCR-ABL1 and as a negative transcriptional regulator of CD44 expression. We show that increased SCL/TAL1 expression is associated with improved outcome in human CML. These data demonstrate the BCR-ABL1-specific, cell-intrinsic pathways leading to altered interactions with the vascular niche via the modulation of adhesion molecules - which could be exploited therapeutically in the future
Curbing methicillin-resistant Staphylococcus aureus in 38 French hospitals through a 15-year institutional control program
BACKGROUND: The Assistance Publique-Hôpitaux de Paris (AP-HP) institution administers 38 teaching hospitals (23 acute care and 15 rehabilitation and long-term care hospitals; total, 23 000 beds) scattered across Paris and surrounding suburbs in France. In the late 1980s, the proportion of methicillin resistance among clinical strains of Staphylococcus aureus (MRSA) reached approximately 40% at AP-HP.METHODS: A program aimed at curbing the MRSA burden was launched in 1993, based on passive and active surveillance, barrier precautions, training, and feedback. This program, supported by the strong commitment of the institution, was reinforced in 2001 by a campaign promoting the use of alcohol-based hand-rub solutions. An observational study on MRSA rate was prospectively carried out from 1993 onwards. RESULTS: There was a significant progressive decrease in MRSA burden (-35%) from 1993 to 2007, whether recorded as the proportion (expressed as percentage) of MRSA among S aureus strains (41.0% down to 26.6% overall; 45.3% to 24.2% in blood cultures) or incidence of MRSA cases (0.86 down to 0.56 per 1000 hospital days). The MRSA burden decreased more markedly in intensive care units (-59%) than in surgical (-44%) and medical (-32%) wards. The use of ABHR solutions (in liters per 1000 hospital days) increased steadily from 2 L to 21 L (to 26 L in acute care hospitals and to 10 L in rehabilitation and long-term care hospitals) following the campaign. CONCLUSION: A sustained reduction of MRSA burden can be obtained at the scale of a large hospital institution with high endemic MRSA rates, providing that an intensive program is maintained for a long period
Saccharothrix sp. PAL54, a new chloramphenicol-producing strain isolated from a Saharan soil
An actinomycete strain designated PAL54, producing an antibacterial substance, was isolated from a Saharan soil in Ghardaïa, Algeria. Morphological and chemical studies indicated that this strain belonged to the genus Saccharothrix. Analysis of the 16S rDNA sequence showed a similarity level ranging between 96.9 and 99.2% within Saccharothrix species, with S. longispora DSM 43749T, the most closely related. DNA–DNA hybridization confirmed that strain PAL54 belonged to Saccharothrix longispora. It showed very strong activity against pathogenic Gram-positive and Gram-negative bacteria responsible for nosocomial infections and resistant to multiple antibiotics. Strain PAL54 secreted the antibiotic optimally during mid-stationary and decline phases of growth. One antibacterial compound was isolated from the culture broth and purified by HPLC. The active compound was elucidated by uv-visible and NMR spectroscopy and by mass spectrometry. The results showed that this compound was a D(-)-threo chloramphenicol. This is the first report of chloramphenicol production by a Saccharothrix species
Sedimentary Clays as Geopolymer Precursor
International audienceThis work aims to study the feasibility of making a geopolymer cement based on dredged sediments, from the Fergoug dam (Algeria) and to evaluate their construction potential particularly interesting in the field of special cementitious materials. These sediments due to their mineralogical composition as aluminosilicates; are materials that can be used after heat treatment. The objective of this study which is part of a long research whose is to contribute to the valorization of these sediments of dredging in the formulation of new concretes by complete substitution of cement. Sedimentary clays were characterized before and after calcination by X-ray diffraction, ATG/ATD, spectroscopy (FTIR) and XRF analysis. The calcination was carried out on the raw material sieved at 80 mu m for a temperature of 750 degrees C, for 3, 4 and 5 hours (calcinations times). The reactivity of the calcined products was measured using isothermal calorimetric analysis (DSC) on pastes prepared by mixing an alkaline solution of sodium hydroxide (NaOH) 8 M in an amount allowing to have a Na / Al ratio close to 1 (11). Also, cubic mortar samples were prepared with a ratio L / S 0.8, sealed and cured for 24 hours at 60 degrees C and then at room temperature until the day they were submited to mechanical testing. to check the extent of geopolymerization. The results obtained allowed to optimize the calcination time of 5 hours for a better reactivity of these sediments, and a concentration of 8M of sodium hydroxide and more suitable to have the best mechanical performances
Formation of a monolayer h-BN nanomesh on Rh (111) studied using in-situ STM
As a member of the 2D family of materials, h-BN is an intrinsic insulator and could be employed as a dielectric or insulating inter-layer in ultra-thin devices. Monolayer h-BN can be synthesized on Rh (111) surfaces using borazine as a precursor. Using in-situ variable-temperature scanning tunneling microscopy (STM), we directly observed the formation of h in real-time. By analyzing the deposition under variable substrate temperatures and the filling rate of the h-BN overlayer vacant hollows during growth, we studied the growth kinetics of how the borazine molecules construct the h-BN overlayer grown on the Rh surface