436 research outputs found
The influence of differential rotation on the detectability of gravitational waves from the r-mode instability
Recently, it was shown that differential rotation is an unavoidable feature
of nonlinear r-modes. We investigate the influence of this differential
rotation on the detectability of gravitational waves emitted by a newly born,
hot, rapidly-rotating neutron star, as it spins down due to the r-mode
instability. We conclude that gravitational radiation may be detected by the
advanced laser interferometer detector LIGO if the amount of differential
rotation at the time the r-mode instability becomes active is not very high.Comment: 8 pages, 6 figures, revtex
Alignment procedure for the VIRGO Interferometer: experimental results from the Frascati prototype
A small fixed-mirror Michelson interferometer has been built in Frascati to
experimentally study the alignment method that has been suggested for VIRGO.
The experimental results fully confirm the adequacy of the method. The minimum
angular misalignment that can be detected in the present set-up is 10
nrad/sqrt{Hz}Comment: 10 pages, LaTex2e, 4 figures, 5 tables. Submitted to Phys. Lett.
Scattering of Woods-Saxon Potential in Schrodinger Equation
The scattering solutions of the one-dimensional Schrodinger equation for the
Woods-Saxon potential are obtained within the position-dependent mass
formalism. The wave functions, transmission and reflection coefficients are
calculated in terms of Heun's function. These results are also studied for the
constant mass case in detail.Comment: 14 page
Renormalization Group calculations with k|| dependent couplings in a ladder
We calculate the phase diagram of a ladder system, with a Hubbard interaction
and an interchain coupling . We use a Renormalization Group method, in
a one loop expansion, introducing an original method to include
dependence of couplings. We also classify the order parameters corresponding to
ladder instabilities. We obtain different results, depending on whether we
include dependence or not. When we do so, we observe a region with
large antiferromagnetic fluctuations, in the vicinity of small ,
followed by a superconducting region with a simultaneous divergence of the Spin
Density Waves channel. We also investigate the effect of a non local backward
interchain scattering : we observe, on one hand, the suppression of singlet
superconductivity and of Spin Density Waves, and, on the other hand, the
increase of Charge Density Waves and, for some values of , of triplet
superconductivity. Our results eventually show that is an influential
variable in the Renormalization Group flow, for this kind of systems.Comment: 20 pages, 19 figures, accepted in Phys. Rev. B 71 v. 2
Detection of Anisotropies in the Gravitational-Wave Stochastic Background
By correlating the signals from a pair of gravitational-wave detectors, one
can undertake sensitive searches for a stochastic background of gravitational
radiation. If the stochastic background is anisotropic, then this correlated
signal varies harmonically with the earth's rotation. We calculate how the
harmonics of this varying signal are related to the multipole moments which
characterize the anisotropy, and give a formula for the signal-to-noise ratio
of a given harmonic. The specific case of the two LIGO (Laser Interferometric
Gravitational Observatory) detectors, which will begin operation around the
year 2000, is analyzed in detail. We consider two possible examples of
anisotropy. If the gravitational-wave stochastic background contains a dipole
intensity anisotropy whose origin (like that of the Cosmic Background
Radiation) is motion of our local system, then that anisotropy will be
observable by the advanced LIGO detector (with 90% confidence in one year of
observation) if \Omega_{gw} > 5.3 \times 10^{-8} h_{100}^{-2}. We also study
the signal produced by stochastic sources distributed in the same way as the
luminous matter in the galactic disk, and in the same way as the galactic halo.
The anisotropy due to sources distributed as the galactic disk or as the
galactic halo will be observable by the advanced LIGO detector (with 90%
confidence in one year of observation) if \Omega_{gw} > 1.8 \times 10^{-10}
h_{100}^{-2} or \Omega_{gw} > 6.7 \times 10^{-8} h_{100}^{-2}, respectively.Comment: 25 pages, Latex with RevTeX and epsfig, now includes S/N ratio
calculations, expected response from anisotropy due to local motion & sources
in galax
Optimal detection of burst events in gravitational wave interferometric observatories
We consider the problem of detecting a burst signal of unknown shape. We
introduce a statistic which generalizes the excess power statistic proposed by
Flanagan and Hughes and extended by Anderson et al. The statistic we propose is
shown to be optimal for arbitrary noise spectral characteristic, under the two
hypotheses that the noise is Gaussian, and that the prior for the signal is
uniform. The statistic derivation is based on the assumption that a signal
affects only affects N samples in the data stream, but that no other
information is a priori available, and that the value of the signal at each
sample can be arbitrary. We show that the proposed statistic can be implemented
combining standard time-series analysis tools which can be efficiently
implemented, and the resulting computational cost is still compatible with an
on-line analysis of interferometric data. We generalize this version of an
excess power statistic to the multiple detector case, also including the effect
of correlated noise. We give full details about the implementation of the
algorithm, both for the single and the multiple detector case, and we discuss
exact and approximate forms, depending on the specific characteristics of the
noise and on the assumed length of the burst event. As a example, we show what
would be the sensitivity of the network of interferometers to a delta-function
burst.Comment: 21 pages, 5 figures in 3 groups. Submitted for publication to
Phys.Rev.D. A Mathematica notebook is available at
http://www.ligo.caltech.edu/~avicere/nda/burst/Burst.nb which allows to
reproduce the numerical results of the pape
How to reduce the suspension thermal noise in LIGO without improving the Q's of the pendulum and violin modes
The suspension noise in interferometric gravitational wave detectors is
caused by losses at the top and the bottom attachments of each suspension
fiber. We use the Fluctuation-Dissipation theorem to argue that by careful
positioning of the laser beam spot on the mirror face it is possible to reduce
the contribution of the bottom attachment point to the suspension noise by
several orders of magnitude. For example, for the initial and enhanced LIGO
design parameters (i.e. mirror masses and sizes, and suspension fibers' lengths
and diameters) we predict a reduction of in the "bottom" spectral
density throughout the band of serious thermal noise. We then
propose a readout scheme which suppresses the suspension noise contribution of
the top attachment point. The idea is to monitor an averaged horizontal
displacement of the fiber of length ; this allows one to record the
contribution of the top attachment point to the suspension noise, and later
subtract it it from the interferometer readout. For enhanced LIGO this would
allow a suppression factor about 100 in spectral density of suspension thermal
noise.Comment: a few misprints corrected; submitted to Classical and Quantum Gravit
Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients
It is known by the experience gained from the gravitational wave detector
proto-types that the interferometric output signal will be corrupted by a
significant amount of non-Gaussian noise, large part of it being essentially
composed of long-term sinusoids with slowly varying envelope (such as violin
resonances in the suspensions, or main power harmonics) and short-term ringdown
noise (which may emanate from servo control systems, electronics in a
non-linear state, etc.). Since non-Gaussian noise components make the detection
and estimation of the gravitational wave signature more difficult, a denoising
algorithm based on adaptive filtering techniques (LMS methods) is proposed to
separate and extract them from the stationary and Gaussian background noise.
The strength of the method is that it does not require any precise model on the
observed data: the signals are distinguished on the basis of their
autocorrelation time. We believe that the robustness and simplicity of this
method make it useful for data preparation and for the understanding of the
first interferometric data. We present the detailed structure of the algorithm
and its application to both simulated data and real data from the LIGO 40meter
proto-type.Comment: 16 pages, 9 figures, submitted to Phys. Rev.
Data analysis strategies for the detection of gravitational waves in non-Gaussian noise
In order to analyze data produced by the kilometer-scale gravitational wave
detectors that will begin operation early next century, one needs to develop
robust statistical tools capable of extracting weak signals from the detector
noise. This noise will likely have non-stationary and non-Gaussian components.
To facilitate the construction of robust detection techniques, I present a
simple two-component noise model that consists of a background of Gaussian
noise as well as stochastic noise bursts. The optimal detection statistic
obtained for such a noise model incorporates a natural veto which suppresses
spurious events that would be caused by the noise bursts. When two detectors
are present, I show that the optimal statistic for the non-Gaussian noise model
can be approximated by a simple coincidence detection strategy. For simulated
detector noise containing noise bursts, I compare the operating characteristics
of (i) a locally optimal detection statistic (which has nearly-optimal behavior
for small signal amplitudes) for the non-Gaussian noise model, (ii) a standard
coincidence-style detection strategy, and (iii) the optimal statistic for
Gaussian noise.Comment: 5 pages RevTeX, 4 figure
Estimation of parameters of gravitational waves from coalescing binaries
In this paper we deal with the measurement of the parameters of the
gravitational wave signal emitted by a coalescing binary signal.
We present the results of Monte Carlo simulations carried out for the case of
the initial LIGO, incorporating the first post-Newtonian corrections into the
waveform. Using the parameters so determined, we estimate the direction to the
source. We stress the use of the time-of-coalescence rather than the
time-of-arrival of the signal to determine the direction of the source. We show
that this can considerably reduce the errors in the determination of the
direction of the source.Comment: 5 pages, REVTEX, 2 figures (bundled via uufiles command along with
this paper) submitted to Praman
- …
