436 research outputs found

    The influence of differential rotation on the detectability of gravitational waves from the r-mode instability

    Get PDF
    Recently, it was shown that differential rotation is an unavoidable feature of nonlinear r-modes. We investigate the influence of this differential rotation on the detectability of gravitational waves emitted by a newly born, hot, rapidly-rotating neutron star, as it spins down due to the r-mode instability. We conclude that gravitational radiation may be detected by the advanced laser interferometer detector LIGO if the amount of differential rotation at the time the r-mode instability becomes active is not very high.Comment: 8 pages, 6 figures, revtex

    Alignment procedure for the VIRGO Interferometer: experimental results from the Frascati prototype

    Get PDF
    A small fixed-mirror Michelson interferometer has been built in Frascati to experimentally study the alignment method that has been suggested for VIRGO. The experimental results fully confirm the adequacy of the method. The minimum angular misalignment that can be detected in the present set-up is 10 nrad/sqrt{Hz}Comment: 10 pages, LaTex2e, 4 figures, 5 tables. Submitted to Phys. Lett.

    Scattering of Woods-Saxon Potential in Schrodinger Equation

    Full text link
    The scattering solutions of the one-dimensional Schrodinger equation for the Woods-Saxon potential are obtained within the position-dependent mass formalism. The wave functions, transmission and reflection coefficients are calculated in terms of Heun's function. These results are also studied for the constant mass case in detail.Comment: 14 page

    Renormalization Group calculations with k|| dependent couplings in a ladder

    Full text link
    We calculate the phase diagram of a ladder system, with a Hubbard interaction and an interchain coupling tt_\perp. We use a Renormalization Group method, in a one loop expansion, introducing an original method to include kk_{||} dependence of couplings. We also classify the order parameters corresponding to ladder instabilities. We obtain different results, depending on whether we include kk_{||} dependence or not. When we do so, we observe a region with large antiferromagnetic fluctuations, in the vicinity of small tt_\perp, followed by a superconducting region with a simultaneous divergence of the Spin Density Waves channel. We also investigate the effect of a non local backward interchain scattering : we observe, on one hand, the suppression of singlet superconductivity and of Spin Density Waves, and, on the other hand, the increase of Charge Density Waves and, for some values of tt_\perp, of triplet superconductivity. Our results eventually show that kk_{||} is an influential variable in the Renormalization Group flow, for this kind of systems.Comment: 20 pages, 19 figures, accepted in Phys. Rev. B 71 v. 2

    Detection of Anisotropies in the Gravitational-Wave Stochastic Background

    Get PDF
    By correlating the signals from a pair of gravitational-wave detectors, one can undertake sensitive searches for a stochastic background of gravitational radiation. If the stochastic background is anisotropic, then this correlated signal varies harmonically with the earth's rotation. We calculate how the harmonics of this varying signal are related to the multipole moments which characterize the anisotropy, and give a formula for the signal-to-noise ratio of a given harmonic. The specific case of the two LIGO (Laser Interferometric Gravitational Observatory) detectors, which will begin operation around the year 2000, is analyzed in detail. We consider two possible examples of anisotropy. If the gravitational-wave stochastic background contains a dipole intensity anisotropy whose origin (like that of the Cosmic Background Radiation) is motion of our local system, then that anisotropy will be observable by the advanced LIGO detector (with 90% confidence in one year of observation) if \Omega_{gw} > 5.3 \times 10^{-8} h_{100}^{-2}. We also study the signal produced by stochastic sources distributed in the same way as the luminous matter in the galactic disk, and in the same way as the galactic halo. The anisotropy due to sources distributed as the galactic disk or as the galactic halo will be observable by the advanced LIGO detector (with 90% confidence in one year of observation) if \Omega_{gw} > 1.8 \times 10^{-10} h_{100}^{-2} or \Omega_{gw} > 6.7 \times 10^{-8} h_{100}^{-2}, respectively.Comment: 25 pages, Latex with RevTeX and epsfig, now includes S/N ratio calculations, expected response from anisotropy due to local motion & sources in galax

    Optimal detection of burst events in gravitational wave interferometric observatories

    Get PDF
    We consider the problem of detecting a burst signal of unknown shape. We introduce a statistic which generalizes the excess power statistic proposed by Flanagan and Hughes and extended by Anderson et al. The statistic we propose is shown to be optimal for arbitrary noise spectral characteristic, under the two hypotheses that the noise is Gaussian, and that the prior for the signal is uniform. The statistic derivation is based on the assumption that a signal affects only affects N samples in the data stream, but that no other information is a priori available, and that the value of the signal at each sample can be arbitrary. We show that the proposed statistic can be implemented combining standard time-series analysis tools which can be efficiently implemented, and the resulting computational cost is still compatible with an on-line analysis of interferometric data. We generalize this version of an excess power statistic to the multiple detector case, also including the effect of correlated noise. We give full details about the implementation of the algorithm, both for the single and the multiple detector case, and we discuss exact and approximate forms, depending on the specific characteristics of the noise and on the assumed length of the burst event. As a example, we show what would be the sensitivity of the network of interferometers to a delta-function burst.Comment: 21 pages, 5 figures in 3 groups. Submitted for publication to Phys.Rev.D. A Mathematica notebook is available at http://www.ligo.caltech.edu/~avicere/nda/burst/Burst.nb which allows to reproduce the numerical results of the pape

    How to reduce the suspension thermal noise in LIGO without improving the Q's of the pendulum and violin modes

    Full text link
    The suspension noise in interferometric gravitational wave detectors is caused by losses at the top and the bottom attachments of each suspension fiber. We use the Fluctuation-Dissipation theorem to argue that by careful positioning of the laser beam spot on the mirror face it is possible to reduce the contribution of the bottom attachment point to the suspension noise by several orders of magnitude. For example, for the initial and enhanced LIGO design parameters (i.e. mirror masses and sizes, and suspension fibers' lengths and diameters) we predict a reduction of 100\sim 100 in the "bottom" spectral density throughout the band 35100Hz35-100\hbox{Hz} of serious thermal noise. We then propose a readout scheme which suppresses the suspension noise contribution of the top attachment point. The idea is to monitor an averaged horizontal displacement of the fiber of length l l; this allows one to record the contribution of the top attachment point to the suspension noise, and later subtract it it from the interferometer readout. For enhanced LIGO this would allow a suppression factor about 100 in spectral density of suspension thermal noise.Comment: a few misprints corrected; submitted to Classical and Quantum Gravit

    Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients

    Get PDF
    It is known by the experience gained from the gravitational wave detector proto-types that the interferometric output signal will be corrupted by a significant amount of non-Gaussian noise, large part of it being essentially composed of long-term sinusoids with slowly varying envelope (such as violin resonances in the suspensions, or main power harmonics) and short-term ringdown noise (which may emanate from servo control systems, electronics in a non-linear state, etc.). Since non-Gaussian noise components make the detection and estimation of the gravitational wave signature more difficult, a denoising algorithm based on adaptive filtering techniques (LMS methods) is proposed to separate and extract them from the stationary and Gaussian background noise. The strength of the method is that it does not require any precise model on the observed data: the signals are distinguished on the basis of their autocorrelation time. We believe that the robustness and simplicity of this method make it useful for data preparation and for the understanding of the first interferometric data. We present the detailed structure of the algorithm and its application to both simulated data and real data from the LIGO 40meter proto-type.Comment: 16 pages, 9 figures, submitted to Phys. Rev.

    Data analysis strategies for the detection of gravitational waves in non-Gaussian noise

    Get PDF
    In order to analyze data produced by the kilometer-scale gravitational wave detectors that will begin operation early next century, one needs to develop robust statistical tools capable of extracting weak signals from the detector noise. This noise will likely have non-stationary and non-Gaussian components. To facilitate the construction of robust detection techniques, I present a simple two-component noise model that consists of a background of Gaussian noise as well as stochastic noise bursts. The optimal detection statistic obtained for such a noise model incorporates a natural veto which suppresses spurious events that would be caused by the noise bursts. When two detectors are present, I show that the optimal statistic for the non-Gaussian noise model can be approximated by a simple coincidence detection strategy. For simulated detector noise containing noise bursts, I compare the operating characteristics of (i) a locally optimal detection statistic (which has nearly-optimal behavior for small signal amplitudes) for the non-Gaussian noise model, (ii) a standard coincidence-style detection strategy, and (iii) the optimal statistic for Gaussian noise.Comment: 5 pages RevTeX, 4 figure

    Estimation of parameters of gravitational waves from coalescing binaries

    Get PDF
    In this paper we deal with the measurement of the parameters of the gravitational wave signal emitted by a coalescing binary signal. We present the results of Monte Carlo simulations carried out for the case of the initial LIGO, incorporating the first post-Newtonian corrections into the waveform. Using the parameters so determined, we estimate the direction to the source. We stress the use of the time-of-coalescence rather than the time-of-arrival of the signal to determine the direction of the source. We show that this can considerably reduce the errors in the determination of the direction of the source.Comment: 5 pages, REVTEX, 2 figures (bundled via uufiles command along with this paper) submitted to Praman
    corecore