9,157 research outputs found

    Reducing Polarization Mode Dispersion With Controlled Polarization Rotations

    Get PDF
    One of the fundamental limitations to high bit rate, long distance, telecommunication in optical fibers is Polarization Mode Dispersion (PMD). Here we introduce a conceptually new method to reduce PMD in optical fibers by carrying out controlled rotations of polarization at predetermined locations along the fiber. The distance between these controlled polarization rotations must be less than both the beat length and the mode coupling length of the fiber. This method can also be combined with the method in which the fiber is spun while it drawn. The incidence of imperfections on the efficiency of the method is analysed.Comment: 4 page

    Guidelines for fabrication of hybrid microcircuits

    Get PDF
    Document is summary of approaches that may be taken in designing hybrid microcircuits similar to those for aerospace application

    Ince's limits for confluent and double-confluent Heun equations

    Full text link
    We find pairs of solutions to a differential equation which is obtained as a special limit of a generalized spheroidal wave equation (this is also known as confluent Heun equation). One solution in each pair is given by a series of hypergeometric functions and converges for any finite value of the independent variable zz, while the other is given by a series of modified Bessel functions and converges for z>z0|z|>|z_{0}|, where z0z_{0} denotes a regular singularity. For short, the preceding limit is called Ince's limit after Ince who have used the same procedure to get the Mathieu equations from the Whittaker-Hill ones. We find as well that, when z0z_{0} tends to zero, the Ince limit of the generalized spheroidal wave equation turns out to be the Ince limit of a double-confluent Heun equation, for which solutions are provided. Finally, we show that the Schr\"odinger equation for inverse fourth and sixth-power potentials reduces to peculiar cases of the double-confluent Heun equation and its Ince's limit, respectively.Comment: Submitted to Journal of Mathmatical Physic

    Geometric scaling of purely-elastic flow instabilities

    Full text link
    We present a combined experimental, numerical and theoretical investigation of the geometric scaling of the onset of a purely-elastic flow instability in a serpentine channel. Good qualitative agreement is obtained between experiments, using dilute solutions of flexible polymers in microfluidic devices, and two-dimensional numerical simulations using the UCM model. The results are confirmed by a simple theoretical analysis, based on the dimensionless criterion proposed by Pakdel-McKinley for onset of a purely-elastic instability

    Axially open nonradiative structures: an example of single-mode resonator based on the sample holder

    Full text link
    The concept of nonradiative dielectric resonator is generalized in order to include axially open configurations having rotational invariance. The resulting additional nonradiative conditions are established for the different resonance modes on the basis of their azimuthal modal index. An approximate chart of the allowed dielectric and geometrical parameters for the TE011 mode is given. A practical realization of the proposed device based on commercial fused quartz tubes is demonstrated at millimeter wavelengths, together with simple excitation and tuning mechanisms. The observed resonances are characterized in their basic parameters, as well as in the field distribution by means of a finite element method. The predictions of the theoretical analysis are well confirmed, both in the general behaviour and in the expected quality factors. The resulting device, in which the sample holder acts itself as single-mode resonating element, combines an extreme ease of realization with state-of-the-art performances. The general benefits of the proposed open single-mode resonators are finally discussed.Comment: 18 pages, 10 figure

    Distal and proximal associates of academic performance at secondary level: A mediation model of personality and self-efficacy

    Get PDF
    The predictive map for personality-related measures has evolved into distal, proximal and immediate associates of academic performance. This study used distal (Five Factor Model) and proximal (Academic Self-efficacy, ASE) associates with GPA (a specific facet of academic performance) at two time points with secondary level students at sixth form college (N = 106, average age 17 and evenly balanced by gender). Openness, Conscientiousness and ASE were associated with GPA at weak to moderate levels. In a path analysis with ASE as the mediator, the three constructs explained 17% variance on academic performance at time 1 and 42% at time 2 when a direct effect from GPA1 to GPA2 was introduced, with Openness and ASE remaining statistically significant when controlling for GPA1, and all three constructs provided significant indirect effects. Findings demonstrate the salient value of Openness and Conscientiousness, when configured with ASE as the mediator. Findings are applied to the approaches that facilitate learning pathways and support ability processes in achievement

    Nonlinear Induction Detection of Electron Spin Resonance

    Full text link
    We present a new approach to the induction detection of electron spin resonance (ESR) signals exploiting the nonlinear properties of a superconducting resonator. Our experiments employ a yttrium barium copper oxide (YBCO) superconducting stripline microwave (MW) resonator integrated with a microbridge. A strong nonlinear response of the resonator is thermally activated in the microbridge when exceeding a threshold in the injected MW power. The responsivity factor characterizing the ESR-induced change in the system's output signal is about 100 times larger when operating the resonator near the instability threshold, compared to the value obtained in the linear regime of operation. Preliminary experimental results, together with a theoretical model of this phenomenon are presented. Under appropriate conditions nonlinear induction detection of ESR can potentially improve upon the current capabilities of conventional linear induction detection ESR

    Weak inter-band coupling in Mg10^{10}B2_{2}: a specific heat analysis

    Full text link
    The superconducting state of Mg10^{10}B2_{2} is investigated by specific heat measurements in detail. The specific heat in the normal state is analyzed using a recently developed computer code. This allows for an extraction of the electronic specific heat in the superconducting state with high accuracy and a fair determination of the main lattice features. One of the two investigated samples shows a hump in the specific heat at low temperatures within the superconducting state, accompanied by an unusual low value of the small gap, Δπ(0)=1.32meV\Delta_{\pi}(0)=1.32 meV, pointing to a very weak inter-band coupling. This sample allows for a detailed analysis of the contribution from the π\pi-band to the electronic specific heat in the superconducting state. Therefore the usual analysis method is modified, to include the individual conservation of entropy of both bands. From analyzing the deviation function D(t)D(t) of MgB2_{2}, the theoretically predicted weak inter-band coupling scenario is confirmed.Comment: major revision
    corecore