1,223 research outputs found

    Selective spin coupling through a single exciton

    Get PDF
    We present a novel scheme for performing a conditional phase gate between two spin qubits in adjacent semiconductor quantum dots through delocalized single exciton states, formed through the inter-dot Foerster interaction. We consider two resonant quantum dots, each containing a single excess conduction band electron whose spin embodies the qubit. We demonstrate that both the two-qubit gate, and arbitrary single-qubit rotations, may be realized to a high fidelity with current semiconductor and laser technology.Comment: 5 pages, 3 figures; published version, equation formatting improved, references adde

    Plasmon dispersion in metal nanoparticle chains from angle-resolved scattering

    Get PDF
    We present angle and frequency resolved optical extinction measurements to determine the dispersion relation of plasmon modes on Ag and Au nanoparticle chains with pitches down to 75 nm. The large splitting between transverse and longitudinal modes and the band curvature are inconsistent with reported electrostatic near-field models, and confirm that far-field retarded interactions are important, even for λ/5\lambda/5-sized structures. The data imply that lower propagation losses, larger signal bandwidth and larger maximum group velocity then expected can be achieved for wave vectors below the light line. We conclude that for the design of optical nanocircuits coherent far-field couplings across the entire circuit need to be considered, even at subwavelength feature sizes.Comment: 4 pages, 4 figures, colo

    Mechanisms of arsenic clustering in silicon

    Full text link
    A model of arsenic clustering in silicon is proposed and analyzed. The main feature of the proposed model is the assumption that negatively charged arsenic complexes play a dominant role in the clustering process. To confirm this assumption, electron density and concentration of impurity atoms incorporated into the clusters are calculated as functions of the total arsenic concentration. A number of the negatively charged clusters incorporating a point defect and one or more arsenic atoms are investigated. It is shown that for the doubly negatively charged clusters or for clusters incorporating more than one arsenic atom the electron density reaches a maximum value and then monotonically and slowly decreases as total arsenic concentration increases. In the case of doubly negatively charged cluster incorporating two arsenic atoms, the calculated electron density agrees well with the experimental data. Agreement with the experiment confirms the conclusion that two arsenic atoms participate in the cluster formation. Among all present models, the proposed model of clustering by formation of doubly negatively charged cluster incorporating two arsenic atoms gives the best fit to the experimental data and can be used in simulation of high concentration arsenic diffusion.Comment: 13 pages, 4 figures. Revised and shortened version of the paper has been published in Phys. Rev. B, Vol.74 (3), art. no. 035205 (2006

    Carrier relaxation in GaAs v-groove quantum wires and the effects of localization

    Get PDF
    Carrier relaxation processes have been investigated in GaAs/AlGaAs v-groove quantum wires (QWRs) with a large subband separation (46 meV). Signatures of inhibited carrier relaxation mechanisms are seen in temperature-dependent photoluminescence (PL) and photoluminescence-excitation (PLE) measurements; we observe strong emission from the first excited state of the QWR below ~50 K. This is attributed to reduced inter-subband relaxation via phonon scattering between localized states. Theoretical calculations and experimental results indicate that the pinch-off regions, which provide additional two-dimensional confinement for the QWR structure, have a blocking effect on relaxation mechanisms for certain structures within the v-groove. Time-resolved PL measurements show that efficient carrier relaxation from excited QWR states into the ground state, occurs only at temperatures > 30 K. Values for the low temperature radiative lifetimes of the ground- and first excited-state excitons have been obtained (340 ps and 160 ps respectively), and their corresponding localization lengths along the wire estimated.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B Attempted to correct corrupt figure

    Adlayer core-level shifts of random metal overlayers on transition-metal substrates

    Get PDF
    We calculate the difference of the ionization energies of a core-electron of a surface alloy, i.e., a B-atom in a A_(1-x) B_x overlayer on a fcc-B(001)-substrate, and a core-electron of the clean fcc-B(001) surface using density-functional-theory. We analyze the initial-state contributions and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Data are presented for Cu_(1-x)Pd_x/Pd(001), Ag_(1-x) Pd_x/Pd(001), Pd_(1-x) Cu_x/Cu(001), and Pd_(1-x) Ag_x/Ag(001), changing x from 0 to 100 %. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from the initial-state trends are explained in terms of the change of inter- and intra-atomic screening upon alloying. A possible role of alloying on the chemical reactivity of metal surfaces is discussed.Comment: 4 pages, 2 figures, Phys. Rev. Letters, to appear in Feb. 199

    Large-signal coherent control of normal modes in quantum-well semiconductor microcavity

    Full text link
    We demonstrate coherent control of the cavity-polariton modes of a quantum-well semiconductor microcavity in a two-color scheme. The cavity enhancement of the excitonic nonlinearity gives rise to a large signal; modulating the relative phase of the excitation pulses between zero and π produces a differential reflectivity (ΔR/R)(ΔR/R) of up to 20%. The maximum nonlinear signal is obtained for cocircular pump and probe polarization. Excitation-induced dephasing is responsible for the incoherent nonlinear response, and limits the contrast ratio of the optical switching. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71163/2/APPLAB-78-25-3941-1.pd

    Spin-dynamic field coupling in strongly THz driven semiconductors : local inversion symmetry breaking

    Full text link
    We study theoretically the optics in undoped direct gap semiconductors which are strongly driven in the THz regime. We calculate the optical sideband generation due to nonlinear mixing of the THz field and the near infrared probe. Starting with an inversion symmetric microscopic Hamiltonian we include the THz field nonperturbatively using non-equilibrium Green function techniques. We find that a self induced relativistic spin-THz field coupling locally breaks the inversion symmetry, resulting in the formation of odd sidebands which otherwise are absent.Comment: 8 pages, 6 figure

    Reading bits on a CD-ROM without a photodiode

    No full text
    The authors demonstrate that the bits of a Compact Disc – Read Only Memory (CD-ROM) can be read without a photodiode (PD). A commercial CD-ROM drive was used and left unmodified except a beam splitter was removed which would route the light to a PD. This allowed for the reflected light to be incident on the laser within the laser package itself. By monitoring fluctuations in the voltage across the laser diode under constant-current injection, it was possible to read and interpret the bits from a spinning CD-ROM
    • …
    corecore