141 research outputs found

    Genomic NGFB variation and multiple sclerosis in a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nerve growth factor β (NGFB) is involved in cell proliferation and survival, and it is a mediator of the immune response. ProNGF, the precursor protein of NGFB, has been shown to induce cell death via interaction with the p75 neurotrophin receptor. In addition, this neurotrophin is differentially expressed in males and females. Hence NGFB is a good candidate to influence the course of multiple sclerosis (MS), much like in the murine model of experimental autoimmune encephalomyelitis (EAE).</p> <p>Methods</p> <p>Ten single nucleotide polymorphisms (SNPs) were genotyped in the <it>NGFB </it>gene in up to 1120 unrelated MS patients and 869 controls. Expression analyses were performed for selected MS patients in order to elucidate the possible functional relevance of the SNPs.</p> <p>Results</p> <p>Significant association of NGFB variations with MS is evident for two SNPs. <it>NGFB </it>mRNA seems to be expressed in sex- and disease progression-related manner in peripheral blood mononuclear cells.</p> <p>Conclusion</p> <p>NGFB variation and expression levels appear as modulating factors in the development of MS.</p

    Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation

    Get PDF
    Liver synthetic and metabolic function can only be optimised by the growth of cells within a supportive liver matrix. This can be achieved by the utilisation of decellularised human liver tissue. Here we demonstrate complete decellularization of whole human liver and lobes to form an extracellular matrix scaffold with a preserved architecture. Decellularized human liver cubic scaffolds were repopulated for up to 21 days using human cell lines hepatic stellate cells (LX2), hepatocellular carcinoma (Sk-Hep-1) and hepatoblastoma (HepG2), with excellent viability, motility and proliferation and remodelling of the extracellular matrix. Biocompatibility was demonstrated by either omental or subcutaneous xenotransplantation of liver scaffold cubes (5 × 5 × 5 mm) into immune competent mice resulting in absent foreign body responses. We demonstrate decellularization of human liver and repopulation with derived human liver cells. This is a key advance in bioartificial liver development

    Neonatal Myocardial Infarction or Myocarditis?

    Get PDF
    We report a 29 week-gestation preterm infant who presented during his second week of life with cardiogenic shock. Clinical presentation and first diagnostics suggested myocardial infarction, but echocardiographic features during follow-up pointed to a diagnosis of enteroviral myocarditis. The child died of chronic heart failure at 9 months of age. Autopsy showed passed myocardial infarction. No signs for active myocarditis were found. We discuss the difficulties in differentiating between neonatal myocardial infarction and myocarditis. Recognizing enteroviral myocarditis as cause for cardiogenic shock is of importance because of the therapeutic options

    On the genetic involvement of apoptosis-related genes in Crohn's disease as revealed by an extended association screen using 245 markers: no evidence for new predisposing factors

    Get PDF
    Crohn's disease (CD) presents as an inflammatory barrier disease with characteristic destructive processes in the intestinal wall. Although the pathomechanisms of CD are still not exactly understood, there is evidence that, in addition to e.g. bacterial colonisation, genetic predisposition contributes to the development of CD. In order to search for predisposing genetic factors we scrutinised 245 microsatellite markers in a population-based linkage mapping study. These microsatellites cover gene loci the encoded protein of which take part in the regulation of apoptosis and (innate) immune processes. Respective loci contribute to the activation/suppression of apoptosis, are involved in signal transduction and cell cycle regulators or they belong to the tumor necrosis factor superfamily, caspase related genes or the BCL2 family. Furthermore, several cytokines as well as chemokines were included. The approach is based on three steps: analyzing pooled DNAs of patients and controls, verification of significantly differing microsatellite markers by genotyping individual DNA samples and, finally, additional reinvestigation of the respective gene in the region covered by the associated microsatellite by analysing single-nucleotide polymorphisms (SNPs). Using this step-wise process we were unable to demonstrate evidence for genetic predisposition of the chosen apoptosis- and immunity-related genes with respect to susceptibility for CD

    Deep learning enables genetic analysis of the human thoracic aorta

    Get PDF
    Genome-wide association analyses identify variants associated with thoracic aortic diameter. A polygenic score for ascending aortic diameter was associated with a diagnosis of thoracic aortic aneurysm in independent samples. Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learning model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci overlapped. Transcriptome-wide analyses, rare-variant burden tests and human aortic single nucleus RNA sequencing prioritized genes including SVIL, which was strongly associated with descending aortic diameter. A polygenic score for ascending aortic diameter was associated with thoracic aortic aneurysm in 385,621 UK Biobank participants (hazard ratio = 1.43 per s.d., confidence interval 1.32-1.54, P = 3.3 x 10(-20)). Our results illustrate the potential for rapidly defining quantitative traits with deep learning, an approach that can be broadly applied to biomedical images

    Cirrhotic human liver extracellular matrix 3D scaffolds promote smad-dependent TGF-β1 epithelial mesenchymal transition

    Get PDF
    An altered liver microenvironment characterized by a dysregulated extracellular matrix (ECM) supports the development and progression of hepatocellular carcinoma (HCC). The development of experimental platforms able to reproduce these physio-pathological conditions is essential in order to identify and validate new therapeutic targets for HCC. The aim of this work was to validate a new in vitro model based on engineering three-dimensional (3D) healthy and cirrhotic human liver scaffolds with HCC cells recreating the micro-environmental features favoring HCC. Healthy and cirrhotic human livers ECM scaffolds were developed using a high shear stress oscillation-decellularization procedure. The scaffolds bio-physical/bio-chemical properties were analyzed by qualitative and quantitative approaches. Cirrhotic 3D scaffolds were characterized by biomechanical properties and microarchitecture typical of the native cirrhotic tissue. Proteomic analysis was employed on decellularized 3D scaffolds and showed specific enriched proteins in cirrhotic ECM in comparison to healthy ECM proteins. Cell repopulation of cirrhotic scaffolds highlighted a unique up-regulation in genes related to epithelial to mesenchymal transition (EMT) and TGFβ signaling. This was also supported by the presence and release of higher concentration of endogenous TGFβ1 in cirrhotic scaffolds in comparison to healthy scaffolds. Fibronectin secretion was significantly upregulated in cells grown in cirrhotic scaffolds in comparison to cells engrafted in healthy scaffolds. TGFβ1 induced the phosphorylation of canonical proteins Smad2/3, which was ECM scaffold-dependent. Important, TGFβ1-induced phosphorylation of Smad2/3 was significantly reduced and ECM scaffold-independent when pre/simultaneously treated with the TGFβ-R1 kinase inhibitor Galunisertib. In conclusion, the inherent features of cirrhotic human liver ECM micro-environment were dissected and characterized for the first time as key pro-carcinogenic components in HCC development

    Assessment of microRNA-related SNP effects in the 3' untranslated region of the IL22RA2 risk locus in multiple sclerosis

    No full text
    Recent large-scale association studies have identified over 100 MS risk loci. One of these MS risk variants is single-nucleotide polymorphism (SNP) rs17066096, located ~14 kb downstream of IL22RA2. IL22RA2 represents a compelling MS candidate gene due to the role of IL-22 in autoimmunity; however, rs17066096 does not map into any known functional element. We assessed whether rs17066096 or a nearby proxy SNP may exert pathogenic effects by affecting microRNA-to-mRNA binding and thus IL22RA2 expression using comprehensive in silico predictions, in vitro reporter assays, and genotyping experiments in 6,722 individuals. In silico screening identified two predicted microRNA binding sites in the 3′UTR of IL22RA2 (for hsa-miR-2278 and hsa-miR-411-5p) encompassing a SNP (rs28366) in moderate linkage disequilibrium with rs17066096 (r 2 = 0.4). The binding of both microRNAs to the IL22RA2 3′UTR was confirmed in vitro, but their binding affinities were not significantly affected by rs28366. Association analyses revealed significant association of rs17066096 and MS risk in our independent German dataset (odds ratio  = 1.15, P = 3.48 × 10−4), but did not indicate rs28366 to be the cause of this signal. While our study provides independent validation of the association between rs17066096 and MS risk, this signal does not appear to be caused by sequence variants affecting microRNA function
    corecore