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Aortic aneurysm, a pathologic enlargement of the aorta, 
is common, having a prevalence of ~1% in industrial-
ized nations1. Over time, the enlarged aorta progressively 

expands; this process can lead to aortic dissection and rupture, 
which are the most catastrophic complications of aortic aneurysm 
and are important causes of sudden cardiac death. Currently, the 
most effective preventive therapy is surgical or endovascular repair 
of the aorta, morbid procedures that are only performed when 
aneurysms are detected before aortic dissection. However, timely 
detection is uncommon because thoracic aortic aneurysm is typi-
cally asymptomatic until the time of dissection or rupture. Unlike 
abdominal aortic aneurysm, which has clinical screening guide-
lines, population screening for thoracic aortic aneurysm is not rou-
tinely performed2,3.

Consequently, the epidemiological and genetic contributions 
to aortic aneurysm have long been of interest to investigators. 
Clinical studies have suggested the close association of aneu-
rysms of the descending thoracic aorta with atherosclerosis and 

lifestyle-associated risk factors, whereas those of the ascending 
aorta occur in younger patients, sometimes associated with patho-
genic genetic predisposition4–6. Mutations in several genes have been 
associated with ascending aortic aneurysms, but the small number 
of implicated genes is mostly limited to highly penetrant Mendelian 
loci identified in family studies7–9. Thus, there is an urgent need to 
identify the genetic basis for variation in aortic size to enable the 
development of new therapeutic targets for medical intervention 
and to identify at-risk individuals with aortic aneurysms.

Results
We hypothesized that the size of the thoracic aorta is a complex 
trait, with contributions from common genetic variants. Because 
the ascending and descending thoracic aorta have not only separate 
biological origins10,11, but also distinct clinical risk factors underly-
ing aneurysm formation12, we chose to quantify these aortic regions 
independently. All analyses were conducted in the UK Biobank 
unless otherwise stated.
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Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learn-
ing model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance 
images from the UK Biobank. We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci 
associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci overlapped. Transcriptome-wide 
analyses, rare-variant burden tests and human aortic single nucleus RNA sequencing prioritized genes including SVIL, which 
was strongly associated with descending aortic diameter. A polygenic score for ascending aortic diameter was associated 
with thoracic aortic aneurysm in 385,621 UK Biobank participants (hazard ratio = 1.43 per s.d., confidence interval 1.32–1.54,  
P = 3.3 × 10−20). Our results illustrate the potential for rapidly defining quantitative traits with deep learning, an approach that 
can be broadly applied to biomedical images.

Nature Genetics | VOL 54 | January 2022 | 40–51 | www.nature.com/naturegenetics40



ArticlesNATURE GEnETics

Semantic segmentation of aorta with deep learning. First, 116 
cross-sectional cardiovascular magnetic resonance imaging (MRI) 
still-frame images at the level of the right pulmonary artery from 
the UK Biobank were manually annotated by a cardiologist (J.P.P.). 
This annotation is known as semantic segmentation—the task of 
identifying and labeling all pixels that comprise an object in an 
image.

We then used those annotations to train a deep learning model 
to perform the same semantic segmentation task. We chose a U-Net 
architecture13,14, because it has: (1) an encoder that permits the 
model to recognize the image content (such as the presence of the 
aorta); and (2) skip-connections from some of the earliest layers 
to some of the deepest layers, enabling fine-grained localization of 
that semantic label within the input image. This allows the model to 
precisely identify the boundaries of the aorta, permitting accurate 
measurements. As a form of transfer learning, this model’s encoder 
had been pretrained on ImageNet, which is a natural-image classifi-
cation dataset. Therefore, instead of starting with random weights, 
the model was initialized with weights that are helpful for process-
ing images, reducing the amount of manual annotation and model 
training necessary to achieve informative results13,15.

During training, 92 images were used for training and 24 were 
used as a validation set. The model achieved 96.5% pixel categoriza-
tion accuracy for the ascending aorta and 94.1% for the descend-
ing aorta in the validation set. These were typical accuracies based 
on tenfold cross-validation (ascending aorta accuracy mean 95.2%, 
range 90.9–97.2%; descending aorta accuracy mean 92.2%, range 
88.9–95.9%). We also evaluated inter-rater reliability between 
annotators, compared models trained by different annotators and 
assessed the dependence of model performance on the number of 
training examples (Supplementary Note and Supplementary Fig. 5, 
with a visualization of model output in Supplementary Fig. 1).

Having trained a deep learning model to recognize the pixels of 
ascending and descending aorta using manually annotated images 
in the UK Biobank, we then applied the model to all dedicated  
aortic MRI data available in the UK Biobank (Table 1). The model 
was applied to 4,374,900 images from 43,243 participants who  
participated in the first UK Biobank imaging visit (Fig. 1). The deep 
learning model produced pixel labels with the same dimensions as 
the input MRI image (generally 240 pixels by 196 pixels).

Diameter measurement and quality control. We applied classical 
computer vision algorithms to postprocess the deep learning out-
put to measure the aortic diameter16. We considered the elliptical 
minor axis at its maximum size throughout the cardiac cycle to be 
the aortic diameter. We computed the diameter of both the ascend-
ing and descending thoracic aorta and treated these as our primary 
phenotypes for subsequent analyses.

Quality control was then performed to exclude measurements 
from images in which the aorta was deemed to be incorrectly rec-
ognized according to one or more heuristics (Methods). In total, 
42,518 UK Biobank participants had at least one measurement 
that passed quality control (40,363 with ascending aortic diameter 
and 41,415 with descending aortic diameter). Some 39,260 partici-
pants’ measurements passed quality control for both ascending and 
descending aorta. We identified a subset of 2,976 individuals who 
had undergone imaging at two different times, and used those data 
to confirm that our modeling approach yielded reproducible mea-
surements (detailed in the Supplementary Note).

Characteristics of the thoracic aortic diameter. The median diam-
eter of the ascending aorta in women was higher with advancing age 
(Extended Data Fig. 1), from 2.9 cm under the age of 55 to 3.1 cm 
over the age of 75. In men, the diameter ranged from 3.2 cm under 
the age of 55 to 3.4 cm over the age of 75. These values are similar 
to those reported previously using MRI to measure ascending aortic 

diameter in other cohorts17. For the descending aorta, the median 
diameter in women ranged from 2.2 cm under the age of 55 to 2.3 cm 
over the age of 75. In men, the diameter ranged from 2.4 cm under 
the age of 55 to 2.6 cm over the age of 75. A standard reference table 
of aortic diameters by age and sex was computed and is available in 
Supplementary Table 1. The ascending and descending aortic diam-
eters were modestly positively correlated with one another (r2 = 0.18  
after adjusting for sex, detailed in the Supplementary Note and 
shown in Supplementary Fig. 2). The ascending aortic diameter had 
greater variance than that of the descending aorta (Supplementary 
Note), consistent with prior observations18.

Correlation between aortic diameter and other traits. We charac
terized the relationship between the aortic diameter and other 
anthropometric measurements in the UK Biobank (Supplementary 
Table 2 and Supplementary Fig. 3a, left). The diameter of the 
ascending aorta was strongly positively correlated with traits such as 
weight, height and blood pressure, as well as traits that correspond 
with larger body size such as greater forced expiratory volume in 
one second, hand grip strength and food and alcohol consumption, 
consistent with previous reports19. The diameter of the ascending 
aorta was strongly inversely correlated with heart rate and biomark-
ers including cholesterol, testosterone and sex-hormone binding 
globulin. We observed similar associations for the descending aortic 
diameter (Supplementary Fig. 3a, right).

We also analyzed the association between aortic size and 
PheCode-based disease labels20. The size of the ascending aorta 
was associated with cardiovascular diseases such as hypertension, 
aortic aneurysm, valvular disorders and cardiac arrhythmias, as 

Table 1 | Baseline characteristics of UK Biobank GWAS 
participants

Women Men

Mean  
(or n)

s.d.  
(or %)

Mean  
(or n)

s.d.  
(or %)

n 20,909 19,842

Age at time of MRI 64.0 7.6 65.3 7.8

Body mass index (kg m−2) 25.9 4.6 27.0 3.9

Height (cm) 163 6.2 176 6.6

Weight (kg) 68.5 12.7 83.6 13.3

Systolic blood pressure 
(mmHg)

132 18 139 17

Diastolic blood pressure 
(mmHg)

79.4 9.7 83.6 9.6

American standard drinks 
per week

4.9 5.5 6.1 7.1

Smoking status

 Current 1,055 5 1,470 7

 Never 13,413 64 11,216 57

 Prefer not to answer 37 0 35 0

 Previous 6,400 31 7,118 36

 Unknown 4 0 3 0

Pack years of smoking 3.6 9.1 5.9 13.0

Ascending aorta  
diameter (cm)

3.04 0.31 3.32 0.34

Descending aorta  
diameter (cm)

2.29 0.18 2.55 0.21

Demographic information is shown for UK Biobank participants with genetic and cardiac MRI data 
that passed quality control as detailed in the sample flow diagram in Extended Data Fig. 2.
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well as other traits including varicose veins, obesity and osteo
arthritis, several of which correspond to previous clinical observa-
tions21. Descending thoracic aortic size was associated with obesity, 
hypertension and varicose veins. Notably, coronary artery disease 
was inversely associated with descending aortic diameter (P = 1.7 
× 10−6), but not associated with ascending diameter (P = 0.6). In 
addition, the descending aortic size was directly associated with 
cholelithiasis and headache, and inversely associated with type 1  

diabetes, as has previously been observed22,23 (Supplementary Table 3  
and Supplementary Fig. 3b, left). Although the ascending and 
descending aortic diameters shared similar correlations with most 
continuous traits, their relationships with PheCode-based disease 
phenotypes were more independent (Supplementary Fig. 3b, right).

Genome-wide association studies of thoracic aortic diameter. We 
next sought to understand the common genetic basis for variation  

Ascending aorta

Descending aorta

Gene prioritization

Study design

UK Biobank MRI
43,000 participants with MRI
 >4 million images (100/person)

1 2 3 4 5 6 7 8 109 11 12 13 14 15 16 17 18 19 20 21 22 23

Diameter 
measurement

Rare variant analysis

snRNA-seq

Transcriptome wide
analysis

Deep learning implementation
 116 samples manually annotated
 U-Net architecture
 ImageNet pretrained encoder

Clinical risk

Polygenic risk predicts 
aneurysm/dissection

Normal

Aneurysm

Dissection

Aortic diameter GWAS
 82 loci for ascending aorta
 47 loci for descending aorta

Fig. 1 | Study overview. The top panel displays a view of the ascending and descending thoracic aorta before and after semantic segmentation, permitting 
measurement of the aortic diameters. The middle panel represents the genome-wide association study findings. The bottom panels represent downstream 
post-GWAS analyses, including rare variant analyses, transcriptome-wide association analyses, single nucleus RNA sequencing and polygenic predictions 
of aortic disease risk.
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Table 2 | GWAS loci for the ascending thoracic aorta

SNP Chromosome BP Effect allele Other allele EAF INFO BETA P value Nearest gene Prior

rs2871651 1 9434969 C T 0.58 0.99 −0.042 5.80 × 10−12 SPSB1

rs67631072 1 38461821 C T 0.45 0.99 0.041 1.40 × 10−12 SF3A3

rs3768274 1 41951383 C T 0.50 0.98 −0.040 6.70 × 10−12 EDN2

rs11207420 1 59646524 G A 0.73 1.00 −0.042 1.30 × 10−10 FGGY Ref. 28

rs72727759 1 185663021 T C 0.74 0.99 −0.041 2.10 × 10−9 HMCN1

rs35534155 1 237207943 A ATT 0.19 0.90 −0.047 9.70 × 10−9 RYR2

rs6707048 2 19720468 T C 0.32 1.00 0.084 3.50 × 10−41 OSR1

rs138963986 2 145752940 G A 0.93 0.96 0.068 4.00 × 10−8 ZEB2

rs12992231 2 148799710 C A 0.64 1.00 −0.039 8.10 × 10−9 MBD5

rs16849225 2 164906820 C T 0.77 1.00 −0.053 1.90 × 10−15 FIGN

rs12052878 2 238227594 G A 0.69 1.00 −0.045 1.10 × 10−11 COL6A3

rs11712199 3 14858226 G A 0.91 0.99 0.069 1.40 × 10−12 FGD5

rs9847006 3 41755359 T C 0.83 1.00 −0.075 3.80 × 10−20 ULK4 Ref. 25

rs545996255 3 58100423 G GT 0.70 0.97 0.057 5.10 × 10−18 FLNB

rs2306272 3 66434643 T C 0.71 1.00 −0.043 1.50 × 10−11 LRIG1

rs55914222 3 128202943 G C 0.97 0.99 0.179 3.90 × 10−22 GATA2

rs1108450 3 186995297 T G 0.83 0.99 −0.050 1.50 × 10−9 MASP1

rs16998073 4 81184341 A T 0.71 1.00 −0.036 3.50 × 10−8 FGF5

rs67846163 4 174656889 A G 0.77 0.99 −0.072 2.30 × 10−24 HAND2

rs73766539 5 81722919 C T 0.79 1.00 0.048 6.80 × 10−10 ATP6AP1L

rs72787618 5 95591331 A G 0.63 0.99 0.099 3.20 × 10−58 PCSK1

rs17470137 5 122531347 G A 0.73 1.00 −0.058 5.80 × 10−19 PRDM6 Ref. 28

rs76888257 5 169809901 C T 0.90 1.00 0.062 1.30 × 10−8 KCNMB1

rs496236 6 11641601 A G 0.46 1.00 0.034 7.20 × 10−10 ADTRP

rs1630736 6 12295987 C T 0.54 0.99 −0.046 8.30 × 10−15 EDN1

rs12199346 6 36641546 C A 0.76 1.00 −0.046 2.00 × 10−10 CDKN1A

rs6459130 6 56055564 G T 0.44 1.00 −0.033 3.30 × 10−10 COL21A1

rs1570350 6 143592386 A G 0.56 0.99 −0.059 2.90 × 10−22 AIG1

rs13203975 6 152333104 G A 0.89 0.99 0.070 3.30 × 10−13 ESR1

rs79215950 7 35277067 G A 0.62 1.00 0.065 7.80 × 10−23 TBX20

rs6974735 7 73428222 A G 0.55 1.00 −0.111 7.90 × 10−77 ELN

rs1583081 7 85034227 G T 0.58 1.00 −0.075 2.40 × 10−36 SEMA3D

rs483916 8 9793601 A C 0.48 0.99 0.044 1.30 × 10−12 MSRA

rs11785562 8 23391493 G A 0.80 0.97 −0.043 3.70 × 10−10 SLC25A37

rs9721183 8 75781818 C T 0.63 0.95 0.048 1.40 × 10−14 PI15

rs16876090 8 108363596 G A 0.91 0.99 −0.080 1.40 × 10−15 ANGPT1

rs562291939 8 120709336 T C 1.00 0.80 0.744 5.10 × 10−26 ENPP2

rs10111085 8 122646152 G T 0.71 0.99 0.048 2.00 × 10−12 HAS2

rs34557926 8 124607159 C T 0.63 0.99 −0.060 2.90 × 10−22 FBXO32

rs112342612 8 141047976 AAC A 0.40 0.95 −0.035 3.30 × 10−9 TRAPPC9

rs4978966 9 113662374 C T 0.79 1.00 0.049 2.50 × 10−11 LPAR1

rs1757223 10 18514999 G A 0.24 0.99 0.042 2.00 × 10−9 CACNB2

rs16916931 10 63813744 A T 0.69 0.98 0.045 1.20 × 10−12 ARID5B

rs7090111 10 65077994 C G 0.58 1.00 0.044 3.10 × 10−13 JMJD1C

rs71482305 10 96119130 C T 0.84 1.00 0.079 6.30 × 10−23 NOC3L

rs1340837 10 97542035 A G 0.59 1.00 0.031 4.90 × 10−9 ENTPD1

rs11196083 10 114500004 G T 0.77 1.00 −0.049 1.60 × 10−11 VTI1A

rs77889556 11 17498057 G A 0.83 0.91 −0.056 8.40 × 10−12 ABCC8

rs3741025 11 30851976 C T 0.43 0.99 0.041 1.70 × 10−10 DCDC1
Continued
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in the size of the ascending and descending thoracic aorta in  
the UK Biobank. We excluded participants from genetic analysis 
if they had an aortic diameter >5 cm, a known history of aortic 
disease or genetic data that did not pass sample-level quality con-
trol (Extended Data Fig. 2). In total, 38,694 participants had data 
that passed quality control and contributed to genetic analyses  
of the ascending aortic diameter, and 39,688 participants contri
buted to analyses of the descending aortic diameter (Table 1;  
participant characteristics stratified by smoking status are displayed 
in Supplementary Table 4).

We confirmed that both traits were highly heritable: the single  
nucleotide polymorphism (SNP) heritability of the size of the 
ascending aorta was 63% (95% confidence interval (CI) 60–67), 
whereas that of the descending aorta was 50% (95% CI 47–53).

We then conducted genome-wide association studies (GWAS) of 
these two traits, testing 16.7 million genotyped and imputed SNPs 

with minor allele frequency >0.001. We identified 82 independent 
loci associated with the diameter of the ascending aorta at a com-
monly used genome-wide significance threshold (P < 5 × 10−8)  
(Table 2 and Fig. 2a,b). Of these, 75 loci were not previously reported 
in common variant GWAS for aortic dimension or disease. In the 
descending aorta, we identified 47 genome-wide significant loci, 
of which 43 were not previously reported in aortic GWAS and one 
was located on the X chromosome (Table 3). In total, we identi-
fied 115 loci, of which 14 were associated at genome-wide signifi-
cance with both traits (Fig. 2c). Test statistic inflation was observed 
in QQ plots (Extended Data Fig. 3) and the low linkage disequi-
librium (LD) score regression (ldsc) intercepts indicated that this 
inflation was consistent with polygenicity rather than confound-
ing (Supplementary Table 5)24. As a sensitivity analysis, the GWAS 
was also repeated in a European-only subset of the UK Biobank 
(Supplementary Note and Supplementary Tables 6 and 7).

SNP Chromosome BP Effect allele Other allele EAF INFO BETA P value Nearest gene Prior

rs111412755 11 69819139 C T 0.91 0.98 −0.093 7.80 × 10−20 ANO1 Ref. 29

rs12286728 11 113022450 G C 0.90 1.00 0.056 3.10 × 10−8 NCAM1

rs747249 11 130271647 A G 0.36 0.99 −0.044 1.30 × 10−12 ADAMTS8

rs61907983 12 15448631 C T 0.91 0.97 0.062 2.60 × 10−8 RERG

rs2307024 12 22005003 T G 0.59 0.99 0.054 2.30 × 10−18 ABCC9

rs56298756 12 62777565 G T 0.89 1.00 −0.082 8.40 × 10−16 USP15

rs10400419 12 66389968 T C 0.45 0.95 0.036 2.50 × 10−9 LLPH Refs. 28,29

rs7302816 12 89950320 A C 0.80 0.98 −0.043 2.50 × 10−8 GALNT4

rs2363080 12 94140463 C G 0.56 0.99 0.037 4.30 × 10−10 CRADD

rs11112482 12 105738183 C G 0.77 0.99 −0.039 2.10 × 10−8 C12orf75

rs61937394 12 116756670 T G 0.81 0.91 0.042 1.60 × 10−8 MED13L

rs7994761 13 22871446 A G 0.78 0.99 0.109 1.30 × 10−52 FGF9

rs2687941 13 50760363 T C 0.55 0.99 −0.032 3.70 × 10−8 DLEU1

rs4905134 14 94459845 A G 0.50 0.99 0.055 5.40 × 10−20 ASB2

rs3803359 15 40662748 G A 0.83 1.00 −0.044 7.50 × 10−9 DISP2

rs2118181 15 48915884 T C 0.90 0.99 −0.082 2.30 × 10−16 FBN1 Refs. 25,26,27

rs1441358 15 71612514 T G 0.66 1.00 0.053 8.10 × 10−17 THSD4

rs369339295 16 56322945 A AAG 0.68 0.97 0.042 1.50 × 10−10 GNAO1

rs62053262 16 69969299 C G 0.95 0.99 0.187 4.00 × 10−42 WWP2

rs546590249 16 71104575 A C 0.99 0.38 0.275 2.70 × 10−8 HYDIN

rs7500448 16 83045790 A G 0.75 0.98 −0.045 2.90 × 10−11 CDH13

rs16965180 16 88989862 A G 0.65 0.99 0.063 1.20 × 10−21 CBFA2T3

17 2088848 CCAGA C 0.68 1.00 −0.063 6.80 × 10−24 SMG6 Refs. 28,29

rs78180894 17 7483662 G C 0.93 0.94 −0.072 6.60 × 10−9 CD68

rs7215383 17 12182246 A G 0.25 0.99 0.078 4.90 × 10−29 MAP2K4

rs6505216 17 29206421 G T 0.77 0.92 0.053 2.00 × 10−11 ATAD5

rs76954792 17 30033514 C T 0.77 0.98 0.044 3.90 × 10−9 COPRS

rs264203 18 10882121 A C 0.38 0.99 −0.035 2.50 × 10−8 PIEZO2

rs7257694 19 30314666 C T 0.60 0.99 −0.039 3.00 × 10−10 CCNE1

rs3063286 20 10488552 T TTA 0.47 0.94 0.034 2.20 × 10−9 SLX4IP

rs6075516 20 19455985 G A 0.75 0.97 0.040 6.30 × 10−9 SLC24A3

rs28451064 21 35593827 G A 0.87 0.96 0.051 4.20 × 10−8 KCNE2

rs4402860 22 40554445 A T 0.80 1.00 0.057 7.30 × 10−14 TNRC6B

The lead SNPs from the GWAS for the diameter of the ascending thoracic aorta. SNP, the rsID of the variant, where available; for variants that are not in the dbSNP database, this column is left blank. BP, 
genomic position, keyed to GRCh37. EAF, effect allele frequency. INFO, imputation INFO score. BETA, effect size per effect allele on the inverse-normal transformed trait. P, the BOLT-LMM association  
P value. Prior, known from prior publications addressing common genetic variation linked to aortic size, aortic aneurysm or aortic dissection25–29.

Table 2 | GWAS loci for the ascending thoracic aorta (Continued)
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Previous analyses of thoracic aortic phenotypes including aortic  
root diameter, ascending aortic dissection or thoracic aortic aneurysm 
have identified only 16 genome-wide significant loci; of these, nine 
achieved genome-wide significance in our study, including all three 
loci that have been associated with thoracic aortic dissection (near 
FBN1, ULK4 and the STAT6-LRP1 locus; Supplementary Table 8)25–29.

We sought to replicate our UK Biobank GWAS findings in 3,287 
participants from the Framingham Heart Study (FHS) who had 
genotyping data and cross-sectional imaging of the ascending and 
descending thoracic aorta by computed tomography30,31. Because 
the FHS sample size was an order of magnitude smaller than our 
discovery population in the UK Biobank, we focused on directional 
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Fig. 2 | Genome-wide association study results for ascending and descending thoracic aorta diameter. a,b, Loci with P < 5 × 10−8 are shown in red (if 
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The X chromosome is represented as ‘23’. a, Loci associated with ascending thoracic aortic diameter. b, Loci associated with descending thoracic aortic 
diameter. c, Venn diagram showing the number of loci uniquely associated at P < 5 × 10−8 with either the ascending or descending thoracic aorta. Those 
in orange are associated with both and are enumerated in the table. Loci whose lead SNP’s nearest gene differs between ascending and descending are 
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Table 3 | GWAS loci for the descending thoracic aorta

SNP Chromosome BP Effect allele Other allele EAF INFO BETA P value Nearest 
gene

Prior

rs35584696 1 89145392 C CT 0.44 1.00 −0.033 3.80 × 10−9 PKN2

rs527725 1 201752429 A C 0.60 0.97 0.036 1.20 × 10−11 NAV1

rs7255 2 20878820 T C 0.45 1.00 0.045 4.80 × 10−17 GDF7

rs202119031 2 179744659 CAG C 0.87 1.00 0.045 3.80 × 10−8 CCDC141

rs7580831 2 238219499 C A 0.68 1.00 −0.037 5.20 × 10−10 COL6A3

rs11707002 3 8580237 C G 0.55 0.99 0.031 2.40 × 10−8 LMCD1

rs5848609 3 41802815 G GTTA 0.84 0.99 −0.041 4.50 × 10−8 ULK4 Ref. 25

rs56004178 3 58101471 G A 0.70 0.99 0.038 3.10 × 10−10 FLNB

rs2055981 3 114203969 T C 0.36 0.99 −0.032 1.70 × 10−8 ZBTB20

rs698099 3 186987941 G A 0.17 1.00 0.060 2.20 × 10−16 MASP1

rs6855532 4 7908237 C T 0.57 1.00 0.030 2.70 × 10−8 AFAP1

rs60991988 4 54801228 T G 0.89 0.99 −0.047 3.70 × 10−8 FIP1L1

rs3733336 4 81207963 A G 0.64 0.90 −0.034 5.10 × 10−9 FGF5

rs6853490 4 95544718 A G 0.58 0.98 0.031 1.00 × 10−8 PDLIM5

rs9285863 5 108071655 T C 0.66 0.99 −0.036 4.20 × 10−10 FER

rs35564079 5 172670611 C CT 0.71 0.97 −0.035 3.00 × 10−8 NKX2-5

rs2853975 6 31382717 A T 0.71 0.99 −0.042 2.60 × 10−12 MICA

rs733590 6 36645203 T C 0.65 1.00 −0.035 2.20 × 10−10 CDKN1A

rs4707174 6 85987918 A C 0.70 0.98 −0.036 5.30 × 10−10 NT5E

6 87836772 ACACACACACC A 0.65 0.77 0.035 3.40 × 10−8 ZNF292

rs2107595 7 19049388 G A 0.84 0.99 0.079 5.80 × 10−27 TWIST1

rs343044 7 35508859 A G 0.20 0.99 −0.047 1.50 × 10−12 TBX20

rs36086322 8 75735030 C T 0.93 1.00 0.059 8.40 × 10−9 PI15

rs574214679 8 120244723 A G 1.00 0.71 0.413 1.10 × 10−8 MAL2

rs10740811 10 30167754 G A 0.41 1.00 0.057 6.40 × 10−25 SVIL

rs2901761 10 95895127 G A 0.59 1.00 0.058 1.70 × 10−25 PLCE1

11 117085914 CTTA C 0.94 1.00 −0.068 6.60 × 10−10 PCSK7

rs10894192 11 130266117 T A 0.42 0.98 −0.030 4.90 × 10−8 ADAMTS8

rs4759275 12 57525756 G A 0.58 1.00 0.035 8.10 × 10−11 STAT6 Ref. 25

rs10744777 12 112233018 T C 0.66 1.00 −0.035 8.80 × 10−10 ALDH2

rs12889267 14 21542766 A G 0.83 1.00 0.048 2.90 × 10−11 ARHGEF40

rs422068 14 23864804 T C 0.64 1.00 0.036 1.10 × 10−9 MYH6

rs12590407 14 24835115 G A 0.29 1.00 0.034 1.40 × 10−8 NFATC4

rs12890024 14 94469801 A G 0.62 0.98 0.038 2.10 × 10−11 OTUB2

rs12913300 15 40655444 C T 0.83 1.00 −0.052 1.20 × 10−12 DISP2

rs17352842 15 48694211 C T 0.81 1.00 −0.037 2.20 × 10−8 FBN1 Refs. 25,26,27

rs1048661 15 74219546 G T 0.66 0.99 −0.038 2.30 × 10−11 LOXL1 Ref. 28

rs116901435 15 79059695 C T 0.58 0.98 −0.032 7.90 × 10−9 ADAMTS7

rs62053262 16 69969299 C G 0.95 0.99 0.087 3.50 × 10−12 WWP2

rs894871 17 77910932 A G 0.68 0.98 −0.032 7.50 × 10−9 TBC1D16

rs8094206 18 46317137 G A 0.89 0.98 0.052 2.00 × 10−9 CTIF

rs55678414 19 2177625 T G 0.94 1.00 0.088 6.70 × 10−15 DOT1L

rs2303040 19 39138608 T C 0.51 0.99 −0.037 9.50 × 10−11 ACTN4

rs1673096 19 41042755 A G 0.52 0.99 0.031 3.20 × 10−8 SPTBN4

rs11668847 19 46210365 T G 0.48 0.98 0.033 5.30 × 10−10 FBXO46

rs76496822 20 10687240 G T 0.96 0.99 −0.072 4.00 × 10−8 JAG1

rs76530933 23 135204774 G T 0.73 0.94 −0.030 3.10 × 10−8 FHL1

The lead SNPs from the GWAS for the diameter of the descending thoracic aorta. SNP, the rsID of the variant, where available; for variants that are not in the dbSNP database, this column is left blank. BP, 
genomic position, keyed to GRCh37. EAF, effect allele frequency. INFO, imputation INFO score. BETA, effect size per effect allele on the inverse-normal transformed trait. P, the BOLT-LMM association P 
value. Prior, known from prior publications addressing common genetic variation linked to aortic size, aortic aneurysm or aortic dissection25–29.
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agreement. Of the 82 lead SNPs in the ascending aorta, 72 were 
identified in the FHS dataset. Sixty of these 72 SNPs were direction-
ally consistent in both datasets (two-tailed binomial P = 8.1 × 10−9; 
Extended Data Fig. 4a). Forty-one of the 46 autosomal lead SNPs 
from the descending aorta were identified in FHS, and 36 of the 41 
were directionally consistent (two-tailed binomial P = 7.8 × 10−7; 
Extended Data Fig. 4b and Supplementary Table 9). Thus, despite 
comprising a substantially smaller sample, as well as using a different  
imaging modality and measurement technique, the FHS results 
were aligned with our findings from the UK Biobank.

Genetic correlation with other phenotypes. We used genetic cor-
relation to gain insight into the relationship between aortic diameter  
and other cardiovascular and anthropometric phenotypes in the 
UK Biobank. The ascending and descending aortic phenotypes had 
a genetic correlation with one another of 0.48 (95% CI 0.45–0.52) 
as estimated by BOLT-REML32,33. We used LD score regression to 
assess genetic correlation between the aortic traits and up to 281 
additional quantitative phenotypes from the UK Biobank that were 
precomputed by the Neale laboratory (https://ukbb-rg.hail.is/)34. As 
expected, we observed positive genetic correlations between aortic 

size and anthropometric measures such as height and weight, as 
well as related phenotypes such as blood pressure (Supplementary 
Table 10, Extended Data Fig. 5 and Supplementary Fig. 4).

Given the observed genetic correlation with blood pressure 
(ldsc rg 0.30 for ascending aortic diameter and 0.17 for descending 
aortic diameter), we also surveyed the overlap between the aortic 
loci and genome-wide significant blood pressure loci. Ten of the 82 
lead SNPs for ascending aortic diameter were within 500 kb of a 
lead SNP from a recent GWAS for blood pressure, as were six of 
the 47 descending aortic lead SNPs (Supplementary Table 11)35. Of 
the nine adrenoceptor genes, which encode the molecular targets of 
alpha- and beta-blocking medicines, none were within 500 kb of a 
lead SNP in our study.

Transcriptome-wide association study. To gain more insight 
into the GWAS loci themselves, we took three approaches to pri-
oritize genes at each locus and to link those genes to relevant cell 
types. First, we conducted a transcriptome-wide association study 
(TWAS), linking predicted gene expression in aorta (based on the 
Genotype-Tissue Expression project (GTEx) v.7) with aortic size 
(Fig. 3a and Supplementary Tables 12 and 13)36,37. We identified 53 
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Fig. 3 | Gene-level association tests. a,b, protein-coding genes associated with the size of the ascending (a) and descending (b) thoracic aorta based on 
an integrated gene expression prediction are shown. The x axis represents the magnitude of the TWAS Z score and the y axis represents the −log10 of the 
TWAS P value. Genes achieving Bonferroni significance are colored red (positive correlation) or blue (negative correlation). The top five positively and 
negatively correlated genes are labeled. c,d, rare-variant collapsing burden test results are depicted for the genes within a 500-kb window around GWAS 
loci (67 for ascending and 55 for descending). Loss-of-function carrier status in each gene was tested for association with the size of the ascending (c) 
and descending (d) thoracic aorta. The x axis represents the effect size of loss of function in each gene on aortic size, whereas the y axis represents the 
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Nature Genetics | VOL 54 | January 2022 | 40–51 | www.nature.com/naturegenetics 47



Articles NATURE GEnETics

transcripts that were significantly associated with the diameter of the 
ascending aorta and 15 with the descending aorta at P < 5 × 10−8.

Among the strongest TWAS associations in the ascending aorta 
were ULK4, a gene previously linked with aortic dissection, and 
THSD4, whose protein product binds to fibrillin (FBN1) and modu-
lates microfibril assembly38. Also notable was USP15, whose protein 
product is a deubiquitinating enzyme that acts on the transforming 
growth factor (TGF)-β receptor and enhances TGF-β signaling39,40; 
the TWAS results suggest that higher USP15 expression is linked 
with a greater ascending aortic diameter. In the descending aorta, 
the strongest TWAS association was with the gene SVIL, of which 
increased transcription was associated with greater aortic diameter 
(Fig. 3a).

Rare-variant association test. Second, we conducted a rare-variant 
association test in 12,336 UK Biobank participants with both aortic 
imaging and exome sequencing data. No gene achieved Bonferroni 
significance in an exome-wide analysis. Restricting the analysis to 
genes within a 500-kb window around GWAS loci (67 genes for 
ascending aorta and 55 genes for descending aorta; Supplementary 
Table 14), we found that loss-of-function variants in SVIL were most 
strongly associated with a smaller mean descending aortic diameter 
(14 carriers; loss-of-function effect size −0.17 cm, 95% CI −0.08 to 
−0.26, P = 2.2 × 10−4; Fig. 3b).

Single nucleus RNA sequencing. Third, we undertook direct anal-
ysis of tissue and cell-specific expression patterns to localize and 
identify relevant cell types. We used tissue-specific LD score regres-
sion to test for enrichment of the aortic diameter GWAS results in 
53 GTEx v.6 tissue types37,41. For the ascending aortic loci, enrich-
ment was significant in aortic and coronary artery tissues (P = 8.8 
× 10−5 and P = 1.1 × 10−4, respectively). Enrichment of aortic and 
coronary artery tissues was also observed for the descending aortic 
loci (P = 3.1 × 10−4 and P = 1.8 × 10−3; Supplementary Tables 15  
and 16). These data are consistent with the expectation that the 
aorta itself is the most relevant tissue linked with our findings.

Therefore, we incorporated an analysis of single nucleus RNA 
sequencing (snRNA-seq) using paired samples from the ascending 
and descending aorta from three individuals to identify potentially 
relevant cell types for the genes at aortic GWAS loci (Supplementary 
Note). We sequenced the transcriptomes of 54,092 nuclei and 
identified 12 primary cell clusters (Fig. 4a). Through comparison 
of unique transcriptional profiles in each cluster to canonical cell 
markers, we identified populations comprising vascular smooth 
muscle cells, fibroblasts, three distinct types of endothelial cells, as  
well as macrophages and lymphocytes (Fig. 4b). We then exam-
ined the cell type-specific expression of the genes prioritized by the 
TWAS (Fig. 4c, d).

Locus prioritization. The gene SVIL was notable for being in 
proximity to one of the strongest GWAS signals for the descending  
aorta. In the TWAS, a predicted increase in SVIL expression  

corresponded to a larger descending aortic diameter (Fig. 3a), 
whereas loss-of-function variants in SVIL were associated with 
a smaller descending aortic diameter in the rare-variant analysis 
(Fig. 3b). snRNA-seq revealed that SVIL is most strongly expressed 
in vascular smooth muscle cells within the aorta (Fig. 4c, d), con-
sistent with a role in aortic size determination. SVIL encodes the 
protein supervillin, an F-actin and myosin II binding protein that 
localizes to and coordinates the action of cell-surface extensions 
called ‘invadosomes’. These promote matrix degradation through 
the localized release of extracellular matrix-lytic enzymes such as 
disintegrin-and-metalloprotease domain-containing proteins and 
matrix metalloproteinases42,43.

In the ascending aorta, a lead SNP (rs1441358) was found within 
an intron of THSD4, which encodes the protein thrombospondin 
type 1 domain containing 4, a protein that promotes the organized 
assembly of fibrillin-1 microfibrils38. In the TWAS, a decrease in pre-
dicted THSD4 expression was linked to an increase in aortic diam-
eter. The gene was excluded from our rare-variant association test 
because too few UK Biobank participants carried a loss-of-function 
variant. A recent familial study of thoracic aortic aneurysm and 
dissection linked loss-of-function variants in THSD4 to ascending 
aortic aneurysm44, consistent with the expected direction of effect. 
Our snRNA-seq data suggest that THSD4 is primarily expressed in 
aortic vascular smooth muscle cells (and a separate cell cluster with 
lymphatic character), consistent with a role in aortic size (Fig. 4c).

Our genetic and single nucleus transcriptomic analyses also 
highlight WWP2, which is linked to the size of both ascending and 
descending aorta. The lead SNP (rs62053262) is an expression quan-
titative trait locus in the aorta for WWP2 (ref. 37); the rs62053262 
G allele corresponds to reduced expression of WWP2 in aorta and 
smaller aortic size. The protein product of WWP2, NEDD4-like 
E3 ubiquitin-protein ligase, acts as an E3 ubiquitin ligase for the 
phosphatase and tensin homolog protein45 and has previously been 
shown to regulate cardiac fibrosis through modulation of SMAD 
signaling46. Examining single nucleus expression data, we show that 
WWP2 expression is enriched in aortic vascular smooth muscle 
cells (Extended Data Fig. 6).

In other cardiovascular phenotypes, GWAS loci have been 
enriched for Mendelian genes47,48, so we asked whether the loci iden-
tified in our study were in closer proximity to more genes impli-
cated in Mendelian aortopathies than expected by chance. We did 
not find an enrichment of previously described Mendelian thoracic 
aortic aneurysm and dissection genes49 (23 genes; two overlapping 
with ascending loci, P = 0.14; one overlapping with descending loci, 
P = 0.32 by one-tailed permutation tests). However, our analysis has 
independently identified loci containing relevant genes such as FBN1, 
well described as the causal gene in Marfan syndrome50, and loci near 
genes such as PI15, known to cause arterial dysfunction in rats51, as 
well as the ABCC9-KCNJ8 locus, linked to Cantú syndrome—a rare 
recessive cause of aortic aneurysm in humans52. Other loci suggest 
the involvement of novel genes within networks previously impli-
cated in aortic disease; for instance, the protein product of ASB2 is 

Fig. 4 | snRNA-seq analyses in human aorta. snRNA-seq was performed on paired ascending and descending thoracic aortic tissue from three humans. 
a, Uniform manifold approximation and projection revealed 12 main clusters. Each dot represents an individual nucleus, colored and labeled by putative 
cell type as identified from Leiden clustering. b, The top five most selectively expressed genes for each cluster were identified as those with the largest 
fold change difference in expression comparing the given cluster with all other clusters, only considering genes expressed in at least 30% of nuclei 
and with a Benjamini–Hochberg corrected P < 0.01. The shade of the dot represents the average log2(expression) for a gene across all nuclei in a given 
cluster and the size of the dot represents the percentage of nuclei in the cluster with nonzero expression. The cell-type labels were created by comparing 
selectively expressed genes in each cluster of nuclei with the literature. c,d, Cell-type specificity of genes with expression data supported by the TWAS in 
the ascending (c) and descending (d) aorta. The size of each square represents the average log2(expression) for a gene across all nuclei in a given cluster. 
The color represents the log(fold change) comparing the expression of the given gene in each cluster with all other clusters based on a formal differential 
expression model. A dot represents significant up- or downregulation in the given cluster based on a Benjamini–Hochberg correction for multiple testing at 
a false discovery rate <0.01. Expr, normalized nucleus-level expression calculated as the number of counts of a gene divided by the total number of counts 
in the nucleus and multiplied by 10,000.
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part of the E3 ligase that targets both filamin B (encoded by FLNB, 
the nearest gene to a lead SNP on chromosome 3) and the known 
aortic disease protein filamin A (FLNA) for degradation53. Moreover, 
TGF-β signaling, heavily implicated in clinical aortic disease, is also 
represented in our GWAS gene set as indicated by MAGMA analysis 
(Extended Data Fig. 7 and Supplementary Tables 17 and 18)54.

Polygenic score associated with clinical aortic disease. Finally, we 
probed the clinical relevance of the GWAS loci by asking whether a 

polygenic score for ascending aortic size produced from these loci 
was associated with thoracic aortic disease risk. We analyzed the 
remaining UK Biobank participants who had not undergone MRI 
and who did not have a diagnosis of aortic disease at enrollment. A 
polygenic score was built from the 89 autosomal, independently sig-
nificant SNPs from the ascending aorta GWAS (including the lead 
SNPs as well as other SNPs with P < 5 × 10−8 having r2 < 0.001 with 
other significant SNPs within the derivation sample; Supplementary 
Table 19). In 385,621 UK Biobank participants over a median of 
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11.2 years of follow-up time after enrollment, this polygenic score 
was strongly associated with the 685 incident cases of thoracic aor-
tic aneurysm or dissection (hazard ratio (HR) = 1.43 per s.d., CI 
1.32–1.54, P = 3.3 × 10−20). Participants in the top 10% of the poly-
genic score had a 2.1-fold higher HR compared with the remaining 
90% of the cohort (CI 1.8–2.6, P = 7.3 × 10−15; Fig. 5). A descending 
aortic diameter polygenic score produced from the 46 autosomal 
lead SNPs had a weaker association with thoracic aortic aneurysm 
or dissection (HR = 1.15 per s.d., CI 1.07–1.24, P = 2.9 × 10−4).

Limitations. Our study is subject to several limitations. The study 
population largely consisted of European ancestry UK Biobank 
participants, limiting generalizability to other populations. The 
aortic measurements were derived from a deep learning model that 
was trained on cardiologist-annotated segmentation data, but the 
vast majority of images were not manually reviewed; nevertheless, 
genetic results derived from manually annotated FHS imaging data 
were generally concordant with our findings. Our experiments sug-
gest that increasing the number of training examples would mod-
estly improve the deep learning model, which may enhance our 
ability to discover genetic associations. The need for additional 
manually annotated training examples is likely to be particularly 
important for more complex structures in future work. The human 
aorta tissue samples for the snRNA expression experiments arose 
from paired samples in three individuals, so there is likely to be con-
siderable variation in expression that is not captured in our analysis. 
Additional questions of interest, such as the presence of gene–envi-
ronment interactions, remain for future work. Because only ~10% 
of the UK Biobank population had exome sequencing data avail-
able, we were unable to explore the relationship between loss- and 
gain-of-function variants in genes such as SVIL and disease diag-
noses outside the imaging cohort; this will be interesting to explore 
when additional sequencing data become available. Finally, because 
thoracic aortic aneurysm is not routinely assessed in screening tests, 
the effect estimate of the ascending aortic polygenic score is likely to 
be biased due to ascertainment in UK Biobank participants; future 
analyses in external datasets will be required to confirm the obser-
vation linking the polygenic score to aortic aneurysm or dissection.

Discussion
In summary, we used deep learning to assess the size of the ascend-
ing and descending thoracic aorta using MRI data in a large 
population-based biobank. We identified 75 previously unreported 
loci in the ascending aorta and 43 in the descending aorta, explored 
their relationships to other traits, and assessed their association 
with aortic aneurysm or dissection. These findings permit several 
conclusions. First, these results demonstrate that deep learning is 
a powerful tool for deriving quantitative phenotypes from raw sig-
nal data at a population level. In particular, by using transfer learn-
ing from a deep learning model trained on a large but unrelated 
set of images compiled for a different task, we were able to develop 
a useful model while manually annotating only a small number of 
images. Second, these results highlight the value of studying quan-
titative traits, such as aortic size, to gain greater understanding of 
disease processes underlying aneurysm and dissection. Third, the 
modest genetic correlation and limited locus overlap of the ascend-
ing and descending thoracic aorta highlight their distinct biology. 
Fourth, we prioritize several potential gene targets based on integra-
tion of GWAS, TWAS and rare-variant analyses, and identify their 
likely cell type of relevance with snRNA-seq. Fifth, a polygenic score 
for ascending aortic size is an independent risk factor for aneurys-
mal enlargement of aorta. Future work is warranted to determine 
whether a model incorporating a polygenic score and clinical risk 
factors might identify high-risk, asymptomatic individuals who 
would benefit from thoracic imaging to screen for ascending aortic 
aneurysm.
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Methods
Study design. All analyses were conducted in the UK Biobank unless otherwise 
stated. The UK Biobank is a richly phenotyped, prospective, population-based 
cohort that recruited 500,000 individuals aged 40–69 in the UK via mailer from 
2006 to 2010 (ref. 55). In total, we analyzed 487,283 participants with genetic data 
who had not withdrawn consent as of October 2018. Access was provided under 
application number 7089. Analysis was approved by the Partners HealthCare 
institutional review board (protocol 2019P003144). GWAS replication was 
performed in an imaging substudy of the community-based FHS Offspring and 
Third-Generation cohorts; participants were ascertained based on sex-specific age 
cutoffs (≥35 years for men and ≥40 years for women), and weight <350 pounds as 
described previously and approved by the institutional review boards of the Boston 
University Medical Center and the Massachusetts General Hospital30. Ascending 
and descending human aortas were obtained from five human patients through a 
rapid autopsy protocol (DFHCC IRB number 13-416) within 4 h of cardiac death.

Our design was as follows: we manually annotated pixels belonging to the 
aortic blood pool in 116 cardiac MRIs from the UK Biobank. We then developed a 
deep learning model, trained on our manual annotations, to perform the same task 
at scale. The model was then applied to the remainder of the imaging data from the 
UK Biobank, permitting us to estimate the aortic diameter for every participant 
with imaging. Genetic discovery of loci related to the diameter of the ascending 
and descending thoracic aorta, treated as quantitative traits, was performed in this 
same UK Biobank cohort. A replication GWAS, based on previously performed 
aortic diameter measurements using computed tomography, was performed in 
the FHS. With the genetic results from the UK Biobank, we performed a TWAS 
by incorporating publicly available gene expression data to prioritize genes at 
each genomic locus. We also performed a rare-variant association test in just over 
~12,000 UK Biobank participants with both imaging and exome sequencing data. 
An snRNA-seq study was then performed (using nuclei from aortas obtained 
from five human patients through a rapid autopsy protocol) to identify the aortic 
cell types that were most relevant to the genes highlighted by our bioinformatic 
analyses. A polygenic score produced from SNPs associated with aortic diameter 
in the UK Biobank GWAS was used to predict incident aortic disease in the 
remaining UK Biobank participants who had not undergone cardiac imaging.

Statistical analyses were conducted with R v.3.6 (R Foundation for Statistical 
Computing, Vienna, Austria).

Cardiac magnetic resonance imaging. The UK Biobank is conducting an imaging 
substudy on 100,000 participants which is currently underway56,57. Cardiac MRI 
was performed with 1.5 Tesla scanners (MAGNETOM Aera, Siemens Healthcare), 
using electrocardiographic gating for cardiac synchronization57. A balanced 
steady-state free precession cine, consisting of a series of exactly 100 images 
throughout the cardiac cycle, was acquired for each participant at the level of the 
right pulmonary artery57.

Deep learning for segmentation of the aorta. Segmentation maps were traced 
for the ascending and descending thoracic aorta manually by a cardiologist (J.P.P.). 
To produce the final model used in this manuscript, 116 samples were chosen, 
manually segmented and then used to train a deep learning model with fastai 
v.1.0.59 (ref. 13). The model consisted of a U-Net-derived architecture, in which 
the encoder was a resnet34 model pretrained on ImageNet13–15,58,59. Eighty percent 
of the samples were used to train the model, and 20% were used for validation. 
Development versions before this final model are detailed in the following section. 
Variations on this modeling approach, and inter-rater evaluations, are described in 
the Supplementary Note.

During training, all images were resized to be 160 pixels in width by 132 pixels 
in height for the first half of training (‘small image training’), and then 240 pixels 
in width by 196 pixels in height, which is the native size of these images, for the 
second half (‘large image training’), detailed below. The Adam optimizer was used, 
and the model was trained with a minibatch size of four (when training with small 
images) or two (when training with large images)60. Rather than using extensive 
hyperparameter tuning with a grid search, the model was trained using a cyclic 
learning rate training policy, which alternately decreases and increases the learning 
rate during training61.

The maximum learning rate (the step size during gradient descent) was 
chosen with the learning rate finder from the FastAI library13. During small image 
training, the maximum learning rate was set at 0.002, with 20% of the iterations 
permitted to have an increasing learning rate during each epoch across 20 epochs. 
This was performed while keeping all ImageNet-pretrained layers fixed, so that 
only the final layer was fine-tuned. Then all layers were unfrozen and the model 
was trained for an additional 15 epochs with the same maximum learning rate. 
For large image training, the same model was then updated using full-dimension 
images, and the maximum learning rate was set to 0.0002, with 30% of the 
iterations permitted to have an increasing learning rate over eight epochs. Then, 
all layers were unfrozen and the model was trained for an additional 15 epochs 
with a maximum learning rate of 0.0002. Additional details about hyperparameter 
selection are provided in the Supplementary Note.

Throughout training, augmentations (random perturbations of the images) 
were applied as a regularization technique. These augmentations included affine 

rotation, zooming and modification of the brightness and contrast. Because 
medical imaging data are not symmetric across the midline of the human body, we 
did not permit mirroring transformations. Using the software default settings for 
splitting samples into training and validation sets, 92 images were used to train the 
model, and 24 were held out for validation. Segmentation accuracy was assessed 
separately for the ascending and descending aorta.

This model was then used to infer segmentation of the ascending and 
descending aorta on all available ‘CINE_segmented_Ao_dist’ images in the UK 
Biobank. During inference, adaptive pooling was used to permit arbitrary image 
sizes62, which allows for the production of output that matches the input size, 
preserving the number of millimeters per pixel as reported in the metadata.

Extraction of aortic diameter from deep learning output. Having identified 
which pixels represented aorta, we were able to determine the aorta’s 
cross-sectional dimensions. The aorta was treated as an ellipse: major and minor 
axes were computed using classical image moment algorithms63. Separately for the 
ascending and the descending thoracic aorta, the length of the minor elliptical axis 
(in centimeters) was ascertained at the point in the cardiac cycle when the aorta 
was at its maximum size (closely corresponding with end-systole). The minor axis 
was chosen for analysis because imperfection in the orientation of the plane of 
image acquisition may falsely elongate the apparent major axis of the ascending 
and descending aorta; by contrast, the dimension of the minor axis is not affected 
by such perturbations. The length of the minor axis, in pixels, was converted to an 
absolute length in centimeters by using the metadata accompanying each image; 
in the UK Biobank, the reported pixel width and height is 1.58 mm for nearly 
all ‘CINE_segmented_Ao_dist’ images. The length of the minor axis (that is, the 
diameter) of the ascending and descending aorta were treated as our primary 
phenotypes for subsequent analyses.

Characteristics of the thoracic aortic diameter. The correlation between 
ascending and descending aortic diameter was assessed with ordinary least 
squares regression. Because of the strong dependence of aortic diameter on sex, 
we configured the model to treat sex as a fixed effect, and predicted the ascending 
aortic diameter from that of the descending aorta. To remove the contribution of 
sex from the estimate of model fit (r2), we also predicted ascending aortic diameter 
from sex alone, and then performed an F test (using 1 degree of freedom for the 
descending aortic diameter) to compare the two nested models.

We also assessed whether the dispersion of the diameters of ascending and 
descending aorta differed. This analysis was stratified by sex. First, we asked 
whether the variance was equal between ascending and descending diameter 
using the F test in R (implemented as var.test). Because the means of the two 
diameters were also different, we then tested whether the coefficient of variation, 
a dimensionless value computed by dividing the s.d. by the mean, was equivalent 
between ascending and descending aorta. Significance testing to compare the 
coefficients of variation was performed using the function asymptotic_test from 
the cvequality package, the test statistic of which is asymptotically χ2 distributed64,65.

Aortic disease codes. International Classification of Diseases version 10  
(ICD-10) codes and Office of Population Censuses and Surveys Classification 
of Interventions and Procedures version 4 (OPCS-4) codes used to define aortic 
procedures and thoracic aortic aneurysm, dissection or rupture are detailed in 
Supplementary Table 20. These definitions were used for GWAS participant 
exclusion and polygenic score assessment.

Correlation between phenotypes and aortic measurements. We conducted 
phenome-wide association studies to assess the relationship between the observed 
aortic traits and: (1) other continuous traits measured in the UK Biobank, and (2) 
other disease phenotypes based on ICD-10 and OPCS-4 codes.

All participants with aortic measurements were used in the continuous trait 
phenome-wide association studies. The number of participants modeled for 
each trait varied based on availability in the UK Biobank. In total, 669 traits had 
sufficient data for analysis using a linear model accounting for the MRI serial 
number, sex, the first five principal components, age at enrollment, the cubic 
natural spline of age at the time of MRI and the genotyping array.

The same covariates were used in a logistic regression model testing the 
relationship between the aortic traits and 1,333 PheCode-defined diseases derived 
from hospital billing codes.

Genotyping, imputation and genetic quality control. As detailed previously, UK 
Biobank samples were genotyped on either the UK BiLEVE or UK Biobank Axiom 
arrays, then centrally imputed into the Haplotype Reference Consortium panel 
and the UK10K+1000 Genomes panel66. Variant positions were identified using 
the GRCh37 human genome reference. Genotyped variants with genotyping call 
rate <0.95 and imputed variants with INFO score <0.3 or minor allele frequency 
≤0.001 in the analyzed samples were excluded. After variant-level quality control, 
16,080,416 imputed autosomal variants and 566,283 imputed variants on the  
X chromosome remained for analysis.

Participants without imputed genetic data, or with a genotyping call rate <0.98, 
mismatch between self-reported sex and sex chromosome count, sex chromosome 
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aneuploidy, excessive third-degree relatives or outliers for heterozygosity as defined 
centrally by the UK Biobank were excluded66.

We excluded participants with a measured aortic diameter >5 cm, a history 
of aortic aneurysm or dissection, or a history of aortic surgical procedures. We 
assessed whether we could also exclude individuals with rare variants likely to 
lead to Mendelian aortopathy from the GWAS; however, in the subset of ~12,000 
participants in the imaging substudy who had exome sequencing data, none had 
Marfan-related FBN1 variants identified in ClinVar.

The aortic diameters were found to be non-normally distributed (with nonzero 
skewness and kurtosis). Therefore, for the heritability analysis and genome-wide 
association study, they were first inverse-normal transformed67.

Heritability and genetic correlation of aortic traits. BOLT-REML v.2.3.4 was 
used to assess the SNP heritability of the minor axis length of the ascending and 
descending thoracic aorta and their genetic correlation with one another using the 
directly genotyped variants in the UK Biobank32.

Genome-wide association study of aortic traits. We analyzed the inverse-normal 
transformed values of the diameter of the ascending and descending thoracic 
aorta at the frame within the cardiac cycle when they were at their largest. GWAS 
for the diameter of the ascending and descending thoracic aorta were conducted 
using BOLT-LMM v.2.3.4 to account for cryptic population structure and sample 
relatedness32,33. These traits were adjusted for age at enrollment, age and age2 at 
the time of MRI, age at enrollment, the first ten principal components of ancestry, 
sex, the genotyping array and the MRI scanner’s unique identifier. We used the full 
autosomal panel of 714,512 directly genotyped SNPs that passed quality control 
to construct the genetic relationship matrix. GWAS covariates included age at 
enrollment, age and age2 at the time of MRI, the first five principal components 
of ancestry, sex, the genotyping array and the MRI scanner’s unique identifier. 
Associations on the X chromosome were also analyzed, using all autosomal SNPs 
and X chromosomal SNPs to construct the genetic relationship matrix (n = 732,151 
SNPs), with the same covariate adjustments and significance threshold as in the 
autosomal analysis. In this analysis mode, BOLT treats individuals with one X 
chromosome as having an allelic dosage of 0/2 and those with two X chromosomes 
as having an allelic dosage of 0/1/2. Variants with association P < 5 × 10−8, a 
commonly used threshold, were considered to be genome-wide significant.

To identify independently significantly associated variants, LD clumping was 
performed with PLINK-1.9 (ref. 68) in the same participants used to conduct the 
GWAS. We used a wide 5-Mb window (--clump-kb 5000) and a stringent LD 
threshold (--r2 0.001) to identify independently significant SNPs despite long LD 
blocks (particularly on chromosome 16 near WWP2). Using the independently 
significant SNPs, distinct genomic loci were defined by starting with the SNP with 
the strongest P value, excluding other SNPs within 500 kb and iterating until no 
SNPs remained. The independently significant SNPs that defined each genomic 
locus are termed the lead SNPs. Lead SNPs were tested for deviation from Hardy–
Weinberg equilibrium at a threshold of P < 1 × 10−6 (ref. 68).

Assessment for test statistic inflation. Quantile–quantile plots of SNP association 
test statistics were produced. LD score regression analysis was performed with 
ldsc v.1.0.0 (ref. 24). For both the ascending and descending aorta GWAS, the 
genomic control factor (lambda GC) was partitioned into polygenic and inflation 
components using the ldsc software’s defaults.

Genetic correlation with other quantitative traits. Genetic correlation across 
traits was assessed using ldsc34 in 281 continuous traits from the UK Biobank 
whose ldsc-formatted summary statistics were made available by the Neale 
laboratory (https://ukbb-rg.hail.is/). Of the 281 tested traits, genetic correlation 
with 257 traits was computable in the ascending aorta and 256 traits in the 
descending aorta.

Tissue-specific LD score regression. To address which tissues were most 
tightly linked to the ascending and descending aorta GWAS results, we applied 
tissue-specific LD score regression against 53 GTEx v.6 tissue types that were 
preprocessed by the ldsc authors37,41. The ldsc authors identified genes that 
were specifically expressed in each tissue, retaining the top 10% of genes most 
specifically expressed from each of the 53 tissues. We then conducted stratified LD 
score regression with these specifically enriched gene sets (ldsc-SEG) to determine 
the contribution of the tissue-specific expression to the heritability of the size of 
the aorta. The returned P value represents the probability of seeing such a large 
coefficient if the null hypothesis (that the tissue is not enriched) were true, that 
is, it tests whether the tissue-specific contribution is distinguishable from zero. 
Significance was determined using a false discovery rate of 5%.

Mendelian aortopathy gene set enrichment. We considered the 23 thoracic aortic 
aneurysm and dissection-related genes from Category A, B, or C from Renard et al. 
to be Mendelian aortopathy genes49. SNPsnap was used to generate 10,000 sets of 
SNPs that match the lead SNPs from the GWAS based on minor allele frequency, 
number of SNPs in linkage disequilibrium, distance to the nearest gene and gene 
density at the locus69. A lead SNP was considered to be near a Mendelian locus if it 

was within 500 kb upstream or downstream of any gene on the panel. Significance 
was assessed by permutation testing across the 10,000 SNP sets to determine the 
neutral expectation for the number of overlapping genes in loci with characteristics 
similar to ours, yielding a one-tailed permutation P value.

Transcriptome-wide association study. For ascending and descending thoracic 
aorta separately, we performed a TWAS to identify genes whose imputed 
cis-regulated gene expression correlates with aortic size36,70–72. We used FUSION 
with expression quantitative trait locus data from GTEx v.7. Precomputed 
transcript expression reference weights for the aorta (n = 6,462 genes) were 
obtained from the FUSION authors’ website (http://gusevlab.org/projects/
fusion/)36,37. FUSION was then run with its default settings.

MAGMA gene set analysis. Using MAGMA 1.07b, we were able to test 7,706 gene 
sets from MSigDB for enrichment in the ascending and descending aortic GWAS 
results54,73. We used gene locations for GRCh37 and European reference data that 
were preprocessed by MAGMA’s authors (https://ctg.cncr.nl/software/magma). 
We used the composite ‘GO_PANTHER_INGENUITY_KEGG_REACTOME_
BIOCARTA’ gene sets from MSigDB provided by the MAGENTA authors74,75.

Exome sequencing in UK Biobank. We conducted an exome sequencing analysis 
in the first 50,000 exomes released by the UK Biobank. Samples from the UK 
Biobank were chosen for exome sequencing based on enrichment for MRI data 
and linked health records76. Exome sequencing was performed by Regeneron and 
reprocessed centrally by the UK Biobank following the Functional Equivalent 
pipeline77. Exomes were captured with the IDT xGen Exome Research Panel v.1.0, 
and sequencing was performed with 75-bp paired-end reads on the Illumina 
NovaSeq 6000 platform using S2 flow cells. Alignment to GRCh38 was performed 
centrally with BWA-mem. Variant calling was performed centrally with GATK 3.0 
(ref. 78). Variants were hard-filtered if the inbreeding coefficient was below −0.03, 
or if none of the following were true: read depth was ≥10, genotype quality was 
≥20 or allele balance was ≥0.2. In total, 49,997 exomes were available. Variants 
were annotated with the Ensembl Variant Effect Predictor version 95 using the 
--pick-allele flag79. LOFTEE was used to identify high-confidence loss-of-function 
variants: stop-gain, splice-site disrupting and frameshift variants80.

Rare-variant association test. We conducted a collapsing burden test to assess 
the impact of loss-of-function variants in up to 12,336 participants who had aortic 
measurements and exome sequencing data available. For quantitative traits (minor 
axis length of the ascending and descending thoracic aorta), with heritability of 
~0.6, we estimated that 13 loss-of-function variant carriers would be sufficient to 
achieve a power of 0.8 at an alpha of 0.05. Variants with minor allele frequency 
≥0.001 were excluded. Using the LOFTEE ‘high-confidence’ loss-of-function 
variants, for each of the 3,285 protein-encoding genes with at least 13 carriers 
of one or more loss-of-function variants in the UK Biobank, we tested whether 
loss-of-function carrier status was associated with aortic minor axis length using 
linear regression. The aortic diameter was the dependent variable and the presence 
or absence of a loss-of-function variant was the independent variable of interest; 
the model was adjusted for weight (kg), height (cm), the MRI serial number, age 
at enrollment, the cubic natural spline of age at the time of MRI, sex, genotyping 
array and the first five principal components of ancestry. We performed an 
additional analysis that subset the gene list to those within a 500-kb window of one 
of the independently associated SNPs from the GWAS.

Association of aortic polygenic scores with incident disease. Within a strictly 
defined European subset of the UK Biobank, we computed a polygenic score from 
the 89 autosomal, independently significant SNPs from the ascending aorta GWAS 
(Supplementary Table 20) and another from the 46 autosomal, independently 
significant SNPs from the descending aorta GWAS (Table 3), excluding 
participants whose data was used for the GWAS (Supplementary Table 21).

The strict European ancestry was defined using individuals who self-identified 
in the UK Biobank as British, Irish or of other European ancestry as previously 
described81. The R package aberrant was applied to the first three pairs of principal 
components with the parameter lambda set to 40; only inliers were considered 
‘European’ for this analysis82.

We analyzed the relationship between the ascending aorta polygenic score 
and incident thoracic aortic aneurysm or dissection in 385,621 individuals (685 
events) using a Cox proportional hazards model that was also adjusted for clinical 
risk factors. There is limited data regarding clinical risk factors for thoracic 
aortic aneurysm outside of associated syndromes and family history, so we chose 
putatively relevant covariates based in part on inference from evidence in the 
abdominal aortic aneurysm literature83. These covariates included sex, prevalent 
diagnoses of type 2 diabetes or hypertension, tobacco smoking history (the 
number of pack years of tobacco smoking), body mass (the cubic natural spline 
of body mass index) and age (the cubic natural spline of age at enrollment). We 
also adjusted for other covariates including the cubic natural spline of height, the 
number of standard alcoholic drinks consumed per week, the genotyping array 
and the first five principal components of ancestry. This analysis was performed 
separately for the ascending and descending aorta polygenic scores.
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Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
UK Biobank data is made available to researchers from universities and other 
research institutions with genuine research inquiries, following IRB and UK 
Biobank approval. Full GWAS summary statistics for ascending and descending 
thoracic aortic measurements are available at the Broad Institute Cardiovascular 
Disease Knowledge Portal (http://www.broadcvdi.org). Single nucleus RNA 
sequencing data are publicly available at the Broad Institute’s Single Cell Portal 
(accession no. SCP1265, https://singlecell.broadinstitute.org/single_cell) and at 
the National Center for Biotechnology Information’s Gene Expression Omnibus 
Database (accession no. GSE165824). The dbGAP accession number for aortic 
phenotypes used in FHS replication is phs000007.v30.p11. All other data are 
contained within the article and its supplementary information, or are available 
upon reasonable request to the corresponding author.

Code availability
The code used to identify connected components is available as a Go library at 
https://github.com/carbocation/genomisc/tree/master/overlay and a README is 
provided in that folder to demonstrate library usage.
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Extended Data Fig. 1 | Aortic size by age and sex. The length of the minor elliptical axis of aorta at its maximum size during the cardiac cycle (that is, the 
diameter) is shown for the ascending aorta (left) and the descending aorta (right). The x-axis represents the participant’s age at the time of cardiac MRI, 
and the y-axis represents the size of aorta. Each point represents one person’s measurements; men are plotted in turquoise and women in red. Sex-specific 
locally weighted scatterplot smoothing (LOESS) curves are overplotted. Each point represents one of the 42,518 participants who passed imaging quality 
control for at least one of the ascending or descending aorta measurements: 40,363 had accepted measurements for ascending aorta, and 41,415 had 
accepted measurements for descending aorta.
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Extended Data Fig. 2 | GWAS sample flow diagram. The GWAS sample flow diagram depicts the sample filtering process that led to the specific samples 
being chosen for the ascending and descending aortic diameter GWAS.
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Extended Data Fig. 3 | GWAS QQ plots. Quantile-quantile plots showing the theoretical distribution of P values under a uniform distribution (x-axis) 
versus the observed distribution within the sample (y-axis) are displayed for the ascending and descending aorta GWAS summary statistics. The plots are 
stratified by minor allele frequency (‘maf_bin’): ‘common’ denotes SNPs with MAF > 0.05, low frequency with 0.005 < MAF ≤ 0.05, and rare with 0.001 
< MAF ≤ 0.005. Variants with MAF < 0.001 were excluded from the analysis.
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Extended Data Fig. 4 | GWAS replication in the Framingham Heart Study. a,b, For lead SNPs from the main UK Biobank GWAS that could be identified in 
a GWAS from FHS, each SNP is plotted based on the UK Biobank Z score (x-axis) and the FHS Z score (y-axis). 72 SNPs for ascending aortic diameter (a) 
and 41 SNPs for descending aortic diameter (b) could be identified in FHS and are plotted here. SNPs where the direction of effect is in agreement between 
FHS and UK Biobank are plotted in blue, while those with opposite direction of effect are marked in red.
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Extended Data Fig. 5 | Genetic correlation with continuous traits. The genetic correlation between continuous traits and the ascending (top) and 
descending (bottom) thoracic aorta in the UK Biobank are represented in volcano plots. Of the 281 tested traits, genetic correlation with 257 traits was 
computable in the ascending aorta and with 256 traits in the descending aorta. The x-axis represents the magnitude of genetic correlation, while the 
y-axis represents the -log10 of the genetic correlation P value, based on ldsc. Traits achieving Bonferroni significance are colored red (for positive genetic 
correlation) or blue (for negative genetic correlation). The top 10 positively and negatively associated traits are labeled. The underlying data are available 
in Supplementary Table 10.
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Extended Data Fig. 6 | Cell type-specific gene expression at the WWP2 locus. Cell-type specificity of genes with expression data within 500 kb of the 
lead SNP near WWP2. As with Fig. 4, the size of each square represents the average log2(Expr) for a gene across all nuclei in a given cluster. The color 
represents the log fold-change comparing the expression of the given gene in each cluster to all other clusters based on a formal differential expression 
model. A dot represents significant up- or down-regulation in the given cluster based on a Benjamini-Hochberg correction for multiple testing at FDR < 
0.01. Expr, normalized nucleus-level expression calculated as the number of counts of a gene divided by the total number of counts in the nucleus and 
multiplied by 10,000; FC, fold-change.
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Extended Data Fig. 7 | MAGMA gene set associations. Gene sets enriched in MAGMA analysis of the GWAS of the ascending (top) and descending 
(bottom) thoracic aorta are represented in volcano plots. The x-axis represents the magnitude of estimated effect of a pathway-based gene set on the 
aortic trait, while the y-axis represents the -log10 of the MAGMA association P value. Pathways achieving Bonferroni significance are colored red and 
labeled. The underlying data are available in Supplementary Tables 17 and 18.
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