1,627 research outputs found

    Fast magnetic reconnection in laser-produced plasma bubbles

    Full text link
    Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pile-up at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfven time.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Let

    All sky CMB map from cosmic strings integrated Sachs-Wolfe effect

    Full text link
    By actively distorting the Cosmic Microwave Background (CMB) over our past light cone, cosmic strings are unavoidable sources of non-Gaussianity. Developing optimal estimators able to disambiguate a string signal from the primordial type of non-Gaussianity requires calibration over synthetic full sky CMB maps, which till now had been numerically unachievable at the resolution of modern experiments. In this paper, we provide the first high resolution full sky CMB map of the temperature anisotropies induced by a network of cosmic strings since the recombination. The map has about 200 million sub-arcminute pixels in the healpix format which is the standard in use for CMB analyses (Nside=4096). This premiere required about 800,000 cpu hours; it has been generated by using a massively parallel ray tracing method piercing through a thousands of state of art Nambu-Goto cosmic string numerical simulations which pave the comoving volume between the observer and the last scattering surface. We explicitly show how this map corrects previous results derived in the flat sky approximation, while remaining completely compatible at the smallest scales.Comment: 8 pages, 4 figures, uses RevTeX. References added, matches published versio

    Three-dimensional Gross-Pitaevskii solitary waves in optical lattices: stabilization using the artificial quartic kinetic energy induced by lattice shaking

    Full text link
    In this Letter, we show that a three-dimensional Bose-Einstein solitary wave can become stable if the dispersion law is changed from quadratic to quartic. We suggest a way to realize the quartic dispersion, using shaken optical lattices. Estimates show that the resulting solitary waves can occupy as little as 1/20\sim 1/20-th of the Brillouin zone in each of the three directions and contain as many as N=103N = 10^{3} atoms, thus representing a \textit{fully mobile} macroscopic three-dimensional object.Comment: 8 pages, 1 figure, accepted in Phys. Lett.

    Oral Lesions in Passerine and Psittacine Birds: A Differential Diagnosis

    Get PDF
    Imagine that you are a recently graduated veterinarian working for a mixed animal practice which serves a moderately populated area. One of your more regular clients presents to you a cockatiel which was purchased six months ago. The owner describes a two week history of dysphagia, anorexia, loss of weight and a general loss of activity. Upon physical examination the most outstanding lesions consisted of white, moderately raised areas of well circumscribed nodules and fibronecrotic plaques in the oral cavity

    Harmonics generation in electron-ion collisions in a short laser pulse

    Full text link
    Anomalously high generation efficiency of coherent higher field-harmonics in collisions between {\em oppositely charged particles} in the field of femtosecond lasers is predicted. This is based on rigorous numerical solutions of a quantum kinetic equation for dense laser plasmas which overcomes limitations of previous investigations.Comment: 4 pages, 4 eps-figures include

    Primordial helium recombination. I. Feedback, line transfer, and continuum opacity

    Get PDF
    Precision measurements of the cosmic microwave background temperature anisotropy on scales ℓ>500 will be available in the near future. Successful interpretation of these data is dependent on a detailed understanding of the damping tail and cosmological recombination of both hydrogen and helium. This paper and two companion papers are devoted to a precise calculation of helium recombination. We discuss several aspects of the standard recombination picture, and then include feedback, radiative transfer in He i lines with partial redistribution, and continuum opacity from H i photoionization. In agreement with past calculations, we find that He ii recombination proceeds in Saha equilibrium, whereas He i recombination is delayed relative to Saha due to the low rates connecting excited states of He i to the ground state. However, we find that at z<2200 the continuum absorption by the rapidly increasing H i population becomes effective at destroying photons in the He i 21Po-11S line, causing He i recombination to finish around z≃1800, much earlier than previously estimated

    Zooplankton Biodiversity Patterns Across a Novel Water Storage Complex in the NJ Pinelands

    Get PDF
    The study involves the collection of zooplankton samples from Whitesbog, which is an inactive cranberry bog complex that is used as water storage for cranberry harvest during the fall season. Whitesbog is novel because very little human activity occurs in the surrounding area that could degrade water quality, but the complex itself is not natural. The water found in the upstream parts of the bog is highly acidic, which likely creates a gradient of ecological dystrophy in the zooplankton community. In this study, we investigate patterns of density and biodiversity across the complex and question whether these patterns are driven by physical-chemical conditions. Zooplankton density for different species varies between sites, with some sites changing more than others over time. Water temperature was the best predictor of zooplankton density, but it is unclear with present data whether this is a non-linear or linear response gradient. Turbidity and water temperature are the best predictors of zooplankton biodiversity, but the environmental variables we measured were insufficient to explain much of the observed differences between sites. Further testing is needed
    corecore