Recent experiments have observed magnetic reconnection in
high-energy-density, laser-produced plasma bubbles, with reconnection rates
observed to be much higher than can be explained by classical theory. Based on
fully kinetic particle simulations we find that fast reconnection in these
strongly driven systems can be explained by magnetic flux pile-up at the
shoulder of the current sheet and subsequent fast reconnection via two-fluid,
collisionless mechanisms. In the strong drive regime with two-fluid effects, we
find that the ultimate reconnection time is insensitive to the nominal system
Alfven time.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Let