Zooplankton Biodiversity Patterns Across a Novel Water Storage Complex in the NJ Pinelands

Emily Wang¹, Kathryn Mickle², Courtney Richmond¹, Nathan Ruhl¹

1: Department of Biological Sciences, Rowan University, Glassboro New Jersey, USA 08028 2: College of Life Sciences, Thomas Jefferson University, East Falls Campus, Philadelphia Pennsylvania, USA 19144

Introduction:

- Humic systems display ecological dystrophy
- Whitesbog is a shallow humic complex used for water storage
- Whitesbog possess pristine water quality, but experiences hydrological disturbance in the fall

Q1a: Are some sites within the Whitesbog complex more similar than others between sampling dates?

Methods:

- Aug: 2-10g of water through net then sieve
- Oct: 1 L of water through sieve Handheld water quality instruments
- Scaled and standardized for temporal comparisons to account for differences in sampling method
- Paired t-test, hierarchical clustering with recursive partitioning, variableselection via step-wise regression followed by polynomial and linear regression (JMP) and NMDS (R)

Q1: Do we have the same pattern of zooplankton abundance across Whitesbog complex between sampling dates? **Figure 2:** Temporal similarity between sites at Whitesbog displayed as raw differences in density. Recursive partitioning indicates 3 groups.

Q1a. Results: Sites 5 and 9 have higher abundances than predicted

Q2: Is zooplankton density across Whitesbog complex predicted by environmental conditions?

8 - R²: 0.578 F(1,21)=28.75, PValue=<.0001 The second secon

Figure 2a: Hydrological flow map with color codes representing groupings from **Figure 2**. Shaded area represents active agricultural area.

Q3: Is zooplankton biodiversity across Whitesbog complex predicted by environmental conditions?

Figure 1: Scaled and standardized density across the Whitesbog complex between sampling dates (paired t-test, t=8.616, p <0.0001).

Q1. Results: There is a difference in zooplankton density between sampling trips.

Figure 3: Regression scatterplots of water temperature and scaled density to all sites (A) and all sites except 5 and 9 (B). For the whole Whitesbog complex the predictive relationship was non-linear, but was linear with the removal of sites 5 and 9.

Q2. Results: Water temperature was best predictor

Figure 4: Non-metric Multi-Dimensional Scaling bi-plot of zooplankton biodiversity at Whitesbog on 6 October 2018 with significant environmental vectors fit to the ordination.

Q3. Results: Environmental predictors do not describe a major variation axis in zooplankton biodiversity

The authors would like to acknowledge Carly Strickland, Pranav Patel, Alexis Piepszowski, Dominic Ruggiero, and Aaron Krivchenia for their work benefiting this project.

> Rowan University

of abundance and biodiversity, but turbidity also important

Conclusion:

Zooplankton density and biodiversity varies across complex Significant temporal complexity

Future Work:

Need to increase suite of environmental predictors (e.g. hydrology)
Wookly compliants bracket Crapherry Harvesty targeting

Weekly sampling to bracket Cranberry Harvest; targeting Fall 2020