12,546 research outputs found

    On the Orbits of Low-mass Companions to White Dwarfs and the Fates of the Known Exoplanets

    Full text link
    The ultimate fates of binary companions to stars (including whether the companion survives and the final orbit of the binary) are of interest in light of an increasing number of recently discovered, low-mass companions to white dwarfs (WDs). In this Letter, we study the evolution of a two-body system wherein the orbit adjusts due to structural changes in the primary, dissipation of orbital energy via tides, and mass loss during the giant phases; previous studies have not incorporated changes in the primary's spin. For companions ranging from Jupiter's mass to ~0.3 Msun and primaries ranging from 1-3 Msun, we determine the minimum initial semimajor axis required for the companion to avoid engulfment by the primary during post-main-sequence evolution, and highlight the implications for the ultimate survival of the known exoplanets. We present regions in secondary mass and orbital period space where an engulfed companion might be expected to survive the common envelope phase (CEP), and compare with known M dwarf+WD short-period binaries. Finally, we note that engulfed Earth-like planets cannot survive a CEP. Detection of a first-generation terrestrial planet in the white dwarf habitable zone requires scattering from a several-AU orbit to a high-eccentricity orbit (with a periastron of ~Rsun) from which it is damped into a circular orbit via tidal friction, possibly rendering it an uninhabitable, charred ember.Comment: Replaced with version in Journa

    Habitable Climates: The Influence of Eccentricity

    Full text link
    In the outer regions of the habitable zone, the risk of transitioning into a globally frozen "snowball" state poses a threat to the habitability of planets with the capacity to host water-based life. We use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and ocean coverage might influence the onset of such a snowball state. For an exoplanet, these parameters may be strikingly different from the values observed for Earth. Since, for constant semimajor axis, the annual mean stellar irradiation scales with (1-e^2)^(-1/2), one might expect the greatest habitable semimajor axis (for fixed atmospheric composition) to scale as (1-e^2)^(-1/4). We find that this standard ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%!) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Since planets on eccentric orbits spend much of their year particularly far from the star, such worlds might turn out to be especially good targets for direct observations with missions such as TPF-Darwin. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently habitable conditions.Comment: References added, text and figures updated, accepted by Ap

    Generation of large-scale winds in horizontally anisotropic convection

    Full text link
    We simulate three-dimensional, horizontally periodic Rayleigh-B\'enard convection between free-slip horizontal plates, rotating about a distant horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind

    The formation of high-field magnetic white dwarfs from common envelopes

    Full text link
    The origin of highly-magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star is engulfed by a post-main-sequence giant, the hydrodynamic drag in the envelope of the giant leads to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.Comment: Accepted to Proceedings of the National Academy of Sciences. Under PNAS embargo until time of publicatio

    Characteristic value determination from small samples

    Get PDF
    The paper deals with the characteristic value determination from relatively small samples. When the distribution and its parameters of a random variable are known, the characteristic value is deterministic quantity. However, in practical problems the parameters of distribution are unknown and can only be estimated from random samples. Therefore the characteristic value is by itself a random variable. The estimates of characteristic values are strongly dependant on the distribution of random variable. In the paper we show the analytical solution for characteristic value determination from random samples of normal and lognormal random variables. The confirmation of analytical results is accomplished by the use of computer simulations. For Gumbel, and Weibull distribution the characteristic value estimates are obtained numerically by combination of simulations and bisection method. In the paper the numerical results are presented for 5% characteristic values with 75% confidence interval, which is in accord with the majority of European building standards. The proposed approach is demonstrated on the data of experimentally obtained bending strengths of finger jointed wooden beams. (C) 2006 Elsevier Ltd. All rights reserved

    Higher-order Continuum Approximation for Rarefied Gases

    Full text link
    The Hilbert-Chapman-Enskog expansion of the kinetic equations in mean flight times is believed to be asymptotic rather than convergent. It is therefore inadvisable to use lower order results to simplify the current approximation as is done in the traditional Chapman-Enskog procedure, since that is an iterative method. By avoiding such recycling of lower order results, one obtains macroscopic equations that are asymptotically equivalent to the ones found in the Chapman-Enskog approach. The new equations contain higher order terms that are discarded in the Chapman-Enskog method. These make a significant impact on the results for such problems as ultrasound propagation. In this paper, it is shown that these results turn out well with relatively little complication when the expansions are carried to second order in the mean free time, for the example of the relaxation or BGK model of kinetic theory.Comment: 20 pages, 2 figures, RevTeX 4 macro

    Constraints on Supersymmetric Dark Matter for Heavy Scalar Superpartners

    Get PDF
    We study the constraints on neutralino dark matter in minimal low energy supersymmetry models and the case of heavy lepton and quark scalar superpartners. For values of the Higgsino and gaugino mass parameters of the order of the weak scale, direct detection experiments are already putting strong bounds on models in which the dominant interactions between the dark matter candidates and nuclei are governed by Higgs boson exchange processes, particularly for positive values of the Higgsino mass parameter mu. For negative values of mu, there can be destructive interference between the amplitudes associated with the exchange of the standard CP-even Higgs boson and the exchange of the non-standard one. This leads to specific regions of parameter space which are consistent with the current experimental constraints and a thermal origin of the observed relic density. In this article we study the current experimental constraints on these scenarios, as well as the future experimental probes, using a combination of direct and indirect dark matter detection and heavy Higgs and electroweakino searches at hadron colliders.Comment: 32 pages, 13 figure
    corecore