22 research outputs found

    Attentional biases in problem and non-problem gamblers

    Get PDF
    Background: From a cognitive perspective, attentional biases are deemed as factors responsible in the onset and development of gambling disorder. However, knowledge relating to attentional processes in gambling is scarce and studies to date have reported contrasting results. Moreover, no study has ever examined which component and what type of bias are involved in attentional polarization in gambling. Methods: In the present study, 108 Italian participants, equally divided into problem and non-problem gamblers were administered a modified Posner Task, an attentional paradigm in which – through the manipulation of stimuli presentation time – it is possible to measure both initial orienting and maintenance of attention. In addition to the experimental task, participants completed self-report measures involving (i) craving (Gambling Craving Scale), (ii) depression, anxiety and stress (Depression Anxiety Stress Scale) and (iii) emotional dysregulation (Difficulties in Emotion Regulation Scale). Results: Analyses revealed facilitation in detecting gambling-related stimuli at the encoding level in problem gamblers but not in non-problem gamblers. Compared to non-problem gamblers, problem gamblers also reported higher levels of craving, emotional dysregulation, and negative mood states. Furthermore, all measures correlated with the gambling severity. Limitations: The use of indirect measure of attentional bias could be less accurate compared to direct measures. Conclusions: The facilitation in detecting gambling-related stimuli in problem gamblers and the correlation between subjective craving and facilitation bias suggests that attentional polarization could not be due to a conditioning process but that motivational factors such as craving could induce addicted-related seeking-behaviors

    Chemical reactions on surfaces for applications in catalysis, gas sensing, adsorption-assisted desalination and Li-ion batteries: opportunities and challenges for surface science

    Full text link
    The study of chemical processes on solid surfaces is a powerful tool to discover novel physicochemical concepts with direct implications for processes based on chemical reactions at surfaces, largely exploited by industry. Recent upgrades of experimental tools and computational capabilities, as well as the advent of two-dimensional materials, have opened new opportunities and challenges for surface science. In this Perspective, we highlight recent advances in application fields strictly connected to novel concepts emerging in surface science. Specifically, we show for selected case-study examples that surface oxidation can be unexpectedly beneficial for improving the efficiency in electrocatalysis (the hydrogen evolution reaction and oxygen evolution reaction) and photocatalysis, as well as in gas sensing. Moreover, we discuss the adsorption-assisted mechanism in membrane distillation for seawater desalination, as well as the use of surface-science tools in the study of Li-ion batteries. In all these applications, surface-science methodologies (both experimental and theoretical) have unveiled new physicochemical processes, whose efficiency can be further tuned by controlling surface phenomena, thus paving the way for a new era for the investigation of surfaces and interfaces of nanomaterials. In addition, we discuss the role of surface scientists in contemporary condensed matter physics, taking as case-study examples specific controversial debates concerning unexpected phenomena emerging in nanosheets of layered materials, solved by adopting a surface-science approach. © the Owner Societies 2020

    Tin Diselenide (SnSe2) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors

    Full text link
    Tin diselenide (SnSe2) is a layered semiconductor with broad application capabilities in the fields of energy storage, photocatalysis, and photodetection. Here, we correlate the physicochemical properties of this van der Waals semiconductor to sensing applications for detecting chemical species (chemosensors) and millimeter waves (terahertz photodetectors) by combining experiments of high-resolution electron energy loss spectroscopy and X-ray photoelectron spectroscopy with density functional theory. The response of the pristine, defective, and oxidized SnSe2 surface towards H2, H2O, H2S, NH3, and NO2 analytes was investigated. Furthermore, the effects of the thickness were assessed for monolayer, bilayer, and bulk samples of SnSe2. The formation of a subnanometric SnO2 skin over the SnSe2 surface (self-assembled SnO2/SnSe2 heterostructure) corresponds to a strong adsorption of all analytes. The formation of non-covalent bonds between SnO2 and analytes corresponds to an increase of the magnitude of the transferred charge. The theoretical model nicely fits experimental data on gas response to analytes, validating the SnO2/SnSe2 heterostructure as a suitable playground for sensing of noxious gases, with sensitivities of 0.43, 2.13, 0.11, 1.06 [ppm]−1 for H2, H2S, NH3, and NO2, respectively. The corresponding limit of detection is 5 ppm, 10 ppb, 250 ppb, and 400 ppb for H2, H2S, NH3, and NO2, respectively. Furthermore, SnSe2-based sensors are also suitable for fast large-area imaging applications at room temperature for millimeter waves in the THz range. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.We acknowledge financial support from the Spanish Ministry of Science and Innovation, through project PID2019-109525RB-I00

    Efficient Electrochemical Water Splitting with PdSn4Dirac Nodal Arc Semimetal

    Get PDF
    Recently, several researchers have claimed the existence of superior catalytic activity associated with topological materials belonging to the class of Dirac/Weyl semimetals, owing to the high electron conductivity and charge carrier mobility in these topological materials. By means of X-ray photoelectron spectroscopy, electrocatalytic tests, and density functional theory, we have investigated the chemical reactivity (chemisorption of ambient gases), ambient stability, and catalytic properties of PdSn4, a topological semimetal showing Dirac node arcs. We find a Tafel slope of 83 mV in the hydrogen evolution reaction (HER) dec-1with an overpotential of 50 mV, with performances resembling those of pure Pd, regardless of its limited amount in the alloy, with a subsequent reduction in the cost of raw materials by ∼80%. Remarkably, the PdSn4-based electrode shows superior robustness to CO compared to pure Pd and Pt and high stability in water media, although the PdSn4surface is prone to oxidation with the formation of a sub-nanometric SnO2skin. Moreover, we also assessed the significance of the role of topological electronic states in the observed catalytic properties. Actually, the peculiar atomic structure of oxidized PdSn4enables the migration of hydrogen atoms through the Sn-O layer with a barrier comparable with the energy cost of the Heyrovsky step of HER over Pt(111) in acidic media (0.1 eV). On the other hand, the topological properties play a minor role, if existing, contrarily to the recent reports overestimating their contribution in catalytic properties. © 2021 The Authors. Published by American Chemical SocietyD.W.B. acknowledges the support from the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, project no. FEUZ-2020-0060 and Jiangsu Innovative and Entrepreneurial Talents Project). A.M., J.F., and F.V. acknowledge the Italian Ministry of University and Research MUR by the PRIN 2017 (no. 2017YH9MRK) and MISE FISR 2019 AMPERE (FISR2019_01294) projects for the financial support

    Efficient Hydrogen Evolution Reaction with Bulk and Nanostructured Mitrofanovite Pt3 Te4

    Full text link
    Here, we discuss the key features of electrocatalysis with mitrofanovite (Pt3 Te4 ), a recently discovered mineral with superb performances in hydrogen evolution reaction. Mitrofanovite is a layered topological metal with spin-polarized topological surface states with potential applications for spintronics. However, mitrofanovite is also an exceptional platform for electrocatalysis, with costs of the electrodes suppressed by 47% owing to the partial replacement of Pt with Te. Remarkably, the Tafel slope in nanostructured mitrofanovite is just 33 mV/dec, while reduced mitrofanovite has the same Tafel slope (36 mV/dec) as state-of-the-art electrodes of pure Pt. Mitrofanovite also affords surface stability and robustness to CO poisoning. Accordingly, these findings pave the way for the advent of mitrofanovite for large-scale hydrogen production. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Funding: D.W.B. acknowledges support from the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, Project No. FEUZ-2020– 0060) and the Jiangsu Innovative and Entrepreneurial Talents Project. This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under Project PID2019–109525RB-I00. D.F. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “Maríade Maeztu” Programme for Units of Excellence in R&D (CEX2018-000805-M). I.V., J. F., and P.T. thank NFFA-Trieste

    Transition-metal dichalcogenides with type-II Dirac fermions: Surface properties and application capabilities

    No full text
    Among the various layered materials “beyond graphene”, the class of transition-metal dichalcogenides MTe2 (M= Ni, Pd, Pt) is particularly interesting, due to the existence of bulk type-II Dirac fermions, arising from a tilted Dirac cone. The Dirac cone in these materials is located in the bulk, with inherently superior robustness to surface modifications compared to other Dirac materials, among which graphene, topological insulator and silicene. In addition, MTe2 also displays application capabilities in optoelectronics and catalysis. Here, with surfacescience experiments and theory, we assess the surface properties of MTe2, including i) ambient stability, ii) chemical reactivity and iii) aging mechanisms. Remarkably, MTe2 shows outstanding tolerance to CO and stability in water environment. We also demonstrate that passivation in ambient atmosphere is achieved in less than 30 minutes with the TeO2 skin having a sub-nanometric thickness even after one year in the air. The existence of Te vacancies leads to the enhancement of the surface chemical reactivity. These results pave the way toward the exploitation of this class of Dirac materials in optoelectronics and catalysis

    The beneficial impact of surface oxidation on electrochemical reactions with GaSe nanosheets

    No full text
    Gallium selenide (GaSe) is a van der Waals semiconductor widely used for optoelectronic devices, whose performances are dictated by bulk properties, including band-gap energy. However, recent experimental observations that the exfoliation of GaSe into atomically thin layers enhances performances in electrochemistry and photocatalysis have apparently opened new avenues for its applications in the fields of energy and catalysis. Here, with surface-science experiments and density functional theory (DFT) we study the oxidation of GaSe into β-Ga2O3. The oxidation driven by Se vacancies, created in the exfoliation process, plays a pivotal role in the catalytic process
    corecore