135 research outputs found
Coherent and consistent relational transfer learning with auto-encoders
Human defined concepts are inherently transferable, but it is not clear under what conditions they can be modelled effectively by non-symbolic artificial learners. This paper argues that for a transferable concept to be learned, the system of relations that define it must be coherent across domains and properties. That is, they should be consistent with respect to relational constraints, and this consistency must extend beyond the representations encountered in the source domain. Further, where relations are modelled by differentiable functions, their gradients must conform – the functions must at times move together to preserve consistency. We propose a Partial Relation Transfer (PRT) task which exposes how well relation-decoders model these properties, and exemplify this with ordinality prediction transfer task, including a new data set for the transfer domain. We evaluate this on existing relation-decoder models, as well as a novel model designed around the principles of consistency and gradient conformity. Results show that consistency across broad regions of input space indicates good transfer performance, and that good gradient conformity facilitates consistency
Recommended from our members
Geometric semi-automatic analysis of radiographs of Colles’ fractures
Fractures of the wrist are common in Emergency Departments, where some patients are treated with a procedure called Manipulation under Anaesthesia. In some cases, this procedure is unsuccessful and patients need to revisit the hospital where they undergo surgery to treat the fracture. This work describes a geometric semi-automatic image analysis algorithm to analyse and compare the x-rays of healthy controls and patients with dorsally displaced wrist fractures (Colles’ fractures) who were treated with Manipulation under Anaesthesia. A series of 161 posterior-anterior radiographs from healthy controls and patients with Colles’ fractures were acquired and analysed. The patients’ group was further subdivided according to the outcome of the procedure (successful/unsuccessful) and pre- or post-intervention creating five groups in total (healthy, pre-successful, pre-unsuccessful, post-successful, post-unsuccessful). The semi-automatic analysis consisted of manual location of three landmarks (finger, lunate and radial styloid) and automatic processing to generate 32 geometric and texture measurements, which may be related to conditions such as osteoporosis and swelling of the wrist. Statistical differences were found between patients and controls, as well as between pre- and post-intervention, but not between the procedures. The most distinct measurements were those of texture. Although the study includes a relatively low number of cases and measurements, the statistical differences are encouraging
Recommended from our members
Predicting recovery following stroke: Deep learning, multimodal data and feature selection using explainable AI
Machine learning offers great potential for automated prediction of post-stroke symptoms and their response to rehabilitation. Major challenges for this endeavour include the very high dimensionality of neuroimaging data, the relatively small size of the datasets available for learning and interpreting the predictive features, as well as, how to effectively combine neuroimaging and tabular data (e.g. demographic information and clinical characteristics). This paper evaluates several solutions based on two strategies. The first is to use 2D images that summarise MRI scans. The second is to select key features that improve classification accuracy. Additionally, we introduce the novel approach of training a convolutional neural network (CNN) on images that combine regions-of-interests (ROIs) extracted from MRIs, with symbolic representations of tabular data.
We evaluate a series of CNN architectures (both 2D and a 3D) that are trained on different representations of MRI and tabular data, to predict whether a composite measure of post-stroke spoken picture description ability is in the aphasic or non-aphasic range. MRI and tabular data were acquired from 758 English speaking stroke survivors who participated in the PLORAS study. Each participant was assigned to one of five different groups that were matched for initial severity of symptoms, recovery time, left lesion size and the months or years post-stroke that spoken description scores were collected. Training and validation were carried out on the first four groups. The fifth (lock-box/test set) group was used to test how well model accuracy generalises to new (unseen) data.
The classification accuracy for a baseline logistic regression was 0.678 based on lesion size alone, rising to 0.757 and 0.813 when initial symptom severity and recovery time were successively added. The highest classification accuracy (0.854), area under the curve (0.899) and F1 score (0.901) were observed when 8 regions of interest were extracted from each MRI scan and combined with lesion size, initial severity and recovery time in a 2D Residual Neural Network (ResNet). This was also the best model when data were limited to the 286 participants with moderate or severe initial aphasia (with area under curve = 0.865), a group that would be considered more difficult to classify.
Our findings demonstrate how imaging and tabular data can be combined to achieve high post-stroke classification accuracy, even when the dataset is small in machine learning terms. We conclude by proposing how the current models could be improved to achieve even higher levels of accuracy using images from hospital scanners
Recommended from our members
Speaker recognition with hybrid features from a deep belief network
Learning representation from audio data has shown advantages over the handcrafted features such as mel-frequency cepstral coefficients (MFCCs) in many audio applications. In most of the representation learning approaches, the connectionist systems have been used to learn and extract latent features from the fixed length data. In this paper, we propose an approach to combine the learned features and the MFCC features for speaker recognition task, which can be applied to audio scripts of different lengths. In particular, we study the use of features from different levels of deep belief network for quantizing the audio data into vectors of audio word counts. These vectors represent the audio scripts of different lengths that make them easier to train a classifier. We show in the experiment that the audio word count vectors generated from mixture of DBN features at different layers give better performance than the MFCC features. We also can achieve further improvement by combining the audio word count vector and the MFCC features
Neural Networks for State Evaluation in General Game Playing
Abstract. Unlike traditional game playing, General Game Playing is concerned with agents capable of playing classes of games. Given the rules of an unknown game, the agent is supposed to play well without human intervention. For this purpose, agent systems that use deterministic game tree search need to automatically construct a state value function to guide search. Successful systems of this type use evaluation functions derived solely from the game rules, thus neglecting further improvements by experience. In addition, these functions are fixed in their form and do not necessarily capture the game’s real state value function. In this work we present an approach for obtaining evaluation functions on the basis of neural networks that overcomes the aforementioned problems. A network initialization extracted from the game rules ensures reasonable behavior without the need for prior training. Later training, however, can lead to significant improvements in evaluation quality, as our results indicate.
Expressing Belief Flow in Assertion Networks
Abstract. In the line of some earlier work done on belief dynamics, we propose an abstract model of belief propagation on a graph based on the methodology of the revision theory of truth. A modal language is developed for portraying the behavior of this model, and its expressiveness is discussed. We compare the proposal of this model as well as the language developed with some of the existing frameworks for modelling communication situations.
Recommended from our members
Contrastive counterfactual visual explanations with overdetermination
A novel explainable AI method called CLEAR Image is introduced in this paper. CLEAR Image is based on the view that a satisfactory explanation should be contrastive, counterfactual and measurable. CLEAR Image seeks to explain an image’s classification probability by contrasting the image with a representative contrast image, such as an auto-generated image obtained via adversarial learning. This produces a salient segmentation and a way of using image perturbations to calculate each segment’s importance. CLEAR Image then uses regression to determine a causal equation describing a classifier’s local input–output behaviour. Counterfactuals are also identified that are supported by the causal equation. Finally, CLEAR Image measures the fidelity of its explanation against the classifier. CLEAR Image was successfully applied to a medical imaging case study where it outperformed methods such as Grad-CAM and LIME by an average of 27% using a novel pointing game metric. CLEAR Image also identifies cases of causal overdetermination, where there are multiple segments in an image that are sufficient individually to cause the classification probability to be close to one
Full-field 3D shape measurement of discontinuous specular objects by direct phase measuring deflectometry
With the advent of intelligent manufacturing, phase measuring deflectometry (PMD) has been widely studied for the measurement of the three-dimensional (3D) shape of specular objects. However, existing PMDs cannot measure objects having discontinuous specular surfaces. This paper presents a new direct PMD (DPMD) method that measures the full-field 3D shape of complicated specular objects. A mathematical model is derived to directly relate an absolute phase map to depth data, instead of the gradient. Two relevant parameters are calibrated using a machine vision-based method. On the basis of the derived model, a full-field 3D measuring system was developed. The accuracy of the system was evaluated using a mirror with known positions along an accurate translating stage. The 3D shape of a monolithic multi-mirror array having multiple specular surfaces was measured. Experimental results show that the proposed DPMD method can obtain the full-field 3D shape of specular objects having isolated and/or discontinuous surfaces accurately and effectively
- …