94 research outputs found

    Nuclearity and Thermal States in Conformal Field Theory

    Full text link
    We introduce a new type of spectral density condition, that we call L^2-nuclearity. One formulation concerns lowest weight unitary representations of SL(2,R) and turns out to be equivalent to the existence of characters. A second formulation concerns inclusions of local observable von Neumann algebras in Quantum Field Theory. We show the two formulations to agree in chiral Conformal QFT and, starting from the trace class condition for the semigroup generated by the conformal Hamiltonian L_0, we infer and naturally estimate the Buchholz-Wichmann nuclearity condition and the (distal) split property. As a corollary, if L_0 is log-elliptic, the Buchholz-Junglas set up is realized and so there exists a beta-KMS state for the translation dynamics on the net of C*-algebras for every inverse temperature beta>0. We include further discussions on higher dimensional spacetimes. In particular, we verify that L^2-nuclearity is satisfied for the scalar, massless Klein-Gordon field.Comment: 37 pages, minor correction

    Scaling algebras and pointlike fields: A nonperturbative approach to renormalization

    Full text link
    We present a method of short-distance analysis in quantum field theory that does not require choosing a renormalization prescription a priori. We set out from a local net of algebras with associated pointlike quantum fields. The net has a naturally defined scaling limit in the sense of Buchholz and Verch; we investigate the effect of this limit on the pointlike fields. Both for the fields and their operator product expansions, a well-defined limit procedure can be established. This can always be interpreted in the usual sense of multiplicative renormalization, where the renormalization factors are determined by our analysis. We also consider the limits of symmetry actions. In particular, for suitable limit states, the group of scaling transformations induces a dilation symmetry in the limit theory.Comment: minor changes and clarifications; as to appear in Commun. Math. Phys.; 37 page

    Stable quantum systems in anti-de Sitter space: Causality, independence and spectral properties

    Full text link
    If a state is passive for uniformly accelerated observers in n-dimensional anti-de Sitter space-time (i.e. cannot be used by them to operate a perpetuum mobile), they will (a) register a universal value of the Unruh temperature, (b) discover a PCT symmetry, and (c) find that observables in complementary wedge-shaped regions necessarily commute with each other in this state. The stability properties of such a passive state induce a "geodesic causal structure" on AdS and concommitant locality relations. It is shown that observables in these complementary wedge-shaped regions fulfill strong additional independence conditions. In two-dimensional AdS these even suffice to enable the derivation of a nontrivial, local, covariant net indexed by bounded spacetime regions. All these results are model-independent and hold in any theory which is compatible with a weak notion of space-time localization. Examples are provided of models satisfying the hypotheses of these theorems.Comment: 27 pages, 1 figure: dedicated to Jacques Bros on the occasion of his 70th birthday. Revised version: typos corrected; as to appear in J. Math. Phy

    Loop groups and noncommutative geometry

    Get PDF
    We describe the representation theory of loop groups in terms of K-theory and noncommutative geometry. This is done by constructing suitable spectral triples associated with the level l projective unitary positive-energy representations of any given loop group LGLG. The construction is based on certain supersymmetric conformal field theory models associated with LG in the setting of conformal nets. We then generalize the construction to many other rational chiral conformal field theory models including coset models and the moonshine conformal net.Comment: Revised versio

    Thermal States in Conformal QFT. II

    Get PDF
    We continue the analysis of the set of locally normal KMS states w.r.t. the translation group for a local conformal net A of von Neumann algebras on the real line. In the first part we have proved the uniqueness of KMS state on every completely rational net. In this second part, we exhibit several (non-rational) conformal nets which admit continuously many primary KMS states. We give a complete classification of the KMS states on the U(1)-current net and on the Virasoro net Vir_1 with the central charge c=1, whilst for the Virasoro net Vir_c with c>1 we exhibit a (possibly incomplete) list of continuously many primary KMS states. To this end, we provide a variation of the Araki-Haag-Kastler-Takesaki theorem within the locally normal system framework: if there is an inclusion of split nets A in B and A is the fixed point of B w.r.t. a compact gauge group, then any locally normal, primary KMS state on A extends to a locally normal, primary state on B, KMS w.r.t. a perturbed translation. Concerning the non-local case, we show that the free Fermi model admits a unique KMS state.Comment: 36 pages, no figure. Dedicated to Rudolf Haag on the occasion of his 90th birthday. The final version is available under Open Access. This paper contains corrections to the Araki-Haag-Kaster-Takesaki theorem (and to a proof of the same theorem in the book by Bratteli-Robinson). v3: a reference correcte

    Superselection Sectors and General Covariance.I

    Full text link
    This paper is devoted to the analysis of charged superselection sectors in the framework of the locally covariant quantum field theories. We shall analize sharply localizable charges, and use net-cohomology of J.E. Roberts as a main tool. We show that to any 4-dimensional globally hyperbolic spacetime it is attached a unique, up to equivalence, symmetric tensor \Crm^*-category with conjugates (in case of finite statistics); to any embedding between different spacetimes, the corresponding categories can be embedded, contravariantly, in such a way that all the charged quantum numbers of sectors are preserved. This entails that to any spacetime is associated a unique gauge group, up to isomorphisms, and that to any embedding between two spacetimes there corresponds a group morphism between the related gauge groups. This form of covariance between sectors also brings to light the issue whether local and global sectors are the same. We conjecture this holds that at least on simply connected spacetimes. It is argued that the possible failure might be related to the presence of topological charges. Our analysis seems to describe theories which have a well defined short-distance asymptotic behaviour.Comment: 66 page

    Representations of Conformal Nets, Universal C*-Algebras and K-Theory

    Full text link
    We study the representation theory of a conformal net A on the circle from a K-theoretical point of view using its universal C*-algebra C*(A). We prove that if A satisfies the split property then, for every representation \pi of A with finite statistical dimension, \pi(C*(A)) is weakly closed and hence a finite direct sum of type I_\infty factors. We define the more manageable locally normal universal C*-algebra C*_ln(A) as the quotient of C*(A) by its largest ideal vanishing in all locally normal representations and we investigate its structure. In particular, if A is completely rational with n sectors, then C*_ln(A) is a direct sum of n type I_\infty factors. Its ideal K_A of compact operators has nontrivial K-theory, and we prove that the DHR endomorphisms of C*(A) with finite statistical dimension act on K_A, giving rise to an action of the fusion semiring of DHR sectors on K_0(K_A)$. Moreover, we show that this action corresponds to the regular representation of the associated fusion algebra.Comment: v2: we added some comments in the introduction and new references. v3: new authors' addresses, minor corrections. To appear in Commun. Math. Phys. v4: minor corrections, updated reference

    Topological features of massive bosons on two dimensional Einstein space-time

    Full text link
    In this paper we tackle the problem of constructing explicit examples of topological cocycles of Roberts' net cohomology, as defined abstractly by Brunetti and Ruzzi. We consider the simple case of massive bosonic quantum field theory on the two dimensional Einstein cylinder. After deriving some crucial results of the algebraic framework of quantization, we address the problem of the construction of the topological cocycles. All constructed cocycles lead to unitarily equivalent representations of the fundamental group of the circle (seen as a diffeomorphic image of all possible Cauchy surfaces). The construction is carried out using only Cauchy data and related net of local algebras on the circle.Comment: 41 pages, title changed, minor changes, typos corrected, references added. Accepted for publication in Ann. Henri Poincare

    The split property for quantum field theories in flat and curved spacetimes

    Get PDF
    The split property expresses a strong form of independence of spacelike separated regions in algebraic quantum field theory. In Minkowski spacetime, it can be proved under hypotheses of nuclearity. An expository account is given of nuclearity and the split property, and connections are drawn to the theory of quantum energy inequalities. In addition, a recent proof of the split property for quantum field theory in curved spacetimes is outlined, emphasising the essential ideas

    Haag duality and the distal split property for cones in the toric code

    Get PDF
    We prove that Haag duality holds for cones in the toric code model. That is, for a cone Lambda, the algebra R_Lambda of observables localized in Lambda and the algebra R_{Lambda^c} of observables localized in the complement Lambda^c generate each other's commutant as von Neumann algebras. Moreover, we show that the distal split property holds: if Lambda_1 \subset Lambda_2 are two cones whose boundaries are well separated, there is a Type I factor N such that R_{Lambda_1} \subset N \subset R_{Lambda_2}. We demonstrate this by explicitly constructing N.Comment: 15 pages, 2 figures, v2: extended introductio
    • …
    corecore