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Abstract. We prove that Haag duality holds for cones in the toric code model. That is, for
a cone �, the algebra R� of observables localized in � and the algebra R�c of observ-
ables localized in the complement �c generate each other’s commutant as von Neumann
algebras. Moreover, we show that the distal split property holds: if �1 ⊂�2 are two cones
whose boundaries are well separated, there is a Type I factor N such that R�1 ⊂N ⊂R�2 .
We demonstrate this by explicitly constructing N .
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1. Introduction

For a finite group G, Kitaev introduced a quantum mechanical model with excita-
tions described by the representation theory of a certain Hopf algebra, the quan-
tum double of G [12]. In recent work, we studied the superselection structure of
the toric code model (where G =Z2) considered on a plane [14], in the spirit of the
Doplicher–Haag–Roberts (DHR) program in algebraic quantum field theory [9].
Haag duality is an important tool in the DHR analysis, and although it is not nec-
essary for the study of the superselection structure of the toric code [14], it does
make the analysis more elegant. In the model we consider here, the appropriate
formulation is as follows. Consider a cone-like region �, and write R� for the von
Neumann algebra generated by the observables localized in � (in the GNS repre-
sentation obtained from the ground state). One can then consider all observables
localized in the complement �c of �, generating an algebra R�c . By locality, i.e.
the property that observables localized in disjoint regions commute, one has the
inclusion R�c ⊂R′

�, where the prime denotes the commutant. Haag duality is the
statement that the reverse inclusion also holds.

The distal split property, a consequence of Haag duality, is perhaps of greater
interest in the present context. The property says that if �1 ⊂ �2 are two cones
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whose boundaries are sufficiently well separated, then there is a Type I factor
R�1 ⊂ N ⊂ R�2 [14]. The split property has been studied in a general operator
algebraic framework [8] and has important consequences in the context of alge-
braic quantum field theory (see e.g. [5]). In this note, we present a new proof of
the distal split property for the toric code by explicitly constructing an appropriate
Type I factor N .

The distal split property can be interpreted as a strong statistical independence
of the regions �1 and �c

2. For if it holds, and if normal states ϕ1 (respectively,
ϕ2) of R�1 (respectively, R′

�2
) are given, then there is a normal state ϕ of R�1 ∨

R′
�2

such that ϕ(AB)=ϕ1(A)ϕ2(B). In other words, one can prepare a state in the
region �1 independently of the state in �c

2. It is instructive to consider the relation
with entanglement. If �1 ⊂�2 are two cones whose boundaries are sufficiently well
separated, then by the distal split property there are normal product states ϕ as
above. For such states, there is no violation of Bell’s inequalities for the pair R�1 ,
R�2 of observable algebras (see [16] for a precise formulation of Bell’s inequali-
ties in this context). On the other hand, if we choose �1 =�2, then R�1 and R�c

2
are maximally correlated (cf. [16]). In fact, there is infinite one-copy entanglement
between R�1 and R�2 [11, Cor. 5.1], since R�1 is not of Type I [14, Thm. 5.1]
and Haag duality holds. It should be noted that the requirement on the separation
of the boundaries is actually very weak: often a distance of one is already good
enough. In other words, even a small shift of the cone �1 inside �2 can have great
consequences for the entanglement properties.

As far as the author is aware, currently no general conditions implying Haag
duality are known. However, there are proofs in specific cases, for example for cer-
tain quantum spin chain models [11,13] or in the setting of algebraic quantum
field theory [2,6]. These proofs in the quantum spin chain case make use of the
split property, a stronger condition than the distal split property we consider in
this note. This stronger split property does not hold in the model under consider-
ation, since R� is not of Type I if � is a cone and we have Haag duality.

In studying commutation problems of von Neumann algebras, such as Haag
duality, a natural tool is Tomita–Takesaki modular theory. In algebraic quantum
field theory this theory is relevant because of the Reeh–Schlieder Theorem, accord-
ing to which the vacuum vector is cyclic and separating for the observables local-
ized in a double cone, i.e., the intersection of a forward and backward light cone.
Indeed, this has been used to prove duality results, e.g. in [2,6]. In contrast, in
the model we are considering, the ground state vector � is not cyclic for the alge-
bra of observables localized in a cone, hence we cannot directly apply these tech-
niques. Our strategy, therefore, is to restrict the algebras to a subspace H� of the
representation space H, such that � is cyclic for (the restriction of) R�. One can
also restrict R�c to this subspace, and using a theorem of Rieffel and van Da-
ele [15] one can prove that these restrictions generate each other’s commutant as
subalgebras of B(H�). The final step is to extend this to the algebras acting on H.
It turns out that similar techniques can be used to prove the distal split property.
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In the next section, we recall the toric code model as considered on a plane, and
fix our notations. Section 3 contains a proof of the main result: Haag duality for
cones. In the last section, the distal split property is shown to hold by construct-
ing an interpolating Type I factor explicitly, in contrast with results in algebraic
quantum field theory where the existence follows from abstract arguments.

2. The Model

We first recall the main features of Kitaev’s toric code model [12], considered in
the C∗-algebraic framework for quantum lattice systems [1,14]. Consider a square
Z

2 lattice. On each bond of the lattice (an edge between two vertices of distance 1),
there is a spin-1/2 degree of freedom. That is, at each bond b the local state space
is H{b} =C

2, with observables A({b})= M2(C). The set of bonds will be denoted by
B. If �⊂B is a finite set, A(�) is the algebra of observables living on the bonds
of �. It is the tensor product of the observable algebras acting on the individual
bonds of �. If �1 ⊂ �2 there is an obvious inclusion of corresponding algebras,
obtained by identifying H�2

∼=H�1 ⊗H�2\�1 . This defines a local net of algebras
with respect to the inclusion A(�1) ↪→ A(�2) for �1 ⊂ �2. Define the algebra of
local observables,

Aloc =
⋃

� f ⊂B

A(� f ),

where the union is over the finite subsets � f of B. The algebra A of quasi-local
observables is the completion of Aloc in the norm topology, turning it into a
C∗-algebra. Equivalently, one can see it as the inductive limit of the net � 	→A(�)

in the category of C∗-algebras. Note that A is a uniformly hyperfinite (UHF) alge-
bra [3]. The algebra of observables localized in an arbitrary subset � of B is
defined as

A(�)=
⋃

� f ⊂�

A(� f )
‖·‖

,

where the union is again over finite subsets. An operator A is said to have support
in �, or to be localized in �, if A∈A(�). The set supp(A)⊂B is the smallest sub-
set in which A is localized.

The Hamiltonian of Kitaev’s model is defined in terms of plaquette and star
operators, each supported on four bonds (see Figure 1). If s is a point on
the lattice, star(s) denotes the star based at s. Similarly, plaq(p) is the set of
bonds enclosing a plaquette p. The corresponding star and plaquette operators
are given by

As =
⊗

j∈star(s)

σ x
j , Bp =

⊗

j∈plaq(p)

σ z
j ,
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Figure 1. The Z
2 lattice. The gray bonds each carry a spin-1/2 degree of freedom. A star

(dashed lines) and plaquette (thick lines) are shown.

where the tensor product is understood as having Pauli matrices σ x (respectively,
σ z) in places j , and unit operators in all other positions. It is then straightforward
to check that for all stars s and plaquettes p, we have

[As, Bp]=0.

These operators are used to define the local Hamiltonians. If � f ⊂B is finite, the
associated local Hamiltonian is

H� f =−
∑

star(s)⊂� f

As −
∑

plaq(p)⊂� f

Bp.

The model with dynamics described by these Hamiltonians has a unique ground
state ω, and in the corresponding GNS representation the dynamics is imple-
mented by a Hamiltonian with gap [1,14]. This ground state is determined by
the condition ω(As)=ω(Bp)= 1 for any star (respectively, plaquette) operator As

(respectively, Bp). The following Lemma, can be used to compute the value of the
ground state on other operators.

LEMMA 2.1. Let ω be a state on a C∗-algebra A, and suppose X = X∗ such that
X ≤ I and ω(X)=1. Then ω(XY )=ω(Y X)=ω(Y ) for any Y ∈A.

This lemma follows from the Cauchy–Schwarz inequality (see [1, Section 2.1.1]
for a proof).

We write (π,�,H) for the GNS representation obtained from the ground state
ω. An easy calculation shows that ω((As − I )∗(As − I ))=0 for any star s. A similar
result holds for the plaquette operators Bp, hence

π(As)�=�, π(Bp)�=�. (2.1)

This relation will be useful later.
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Figure 2. Example of a cone (bold bonds). The shaded region is the area bounded by two rays
emanating from a point.

We are mainly interested in (quasi)local observables localized in certain
unbounded cone-like regions. An example is provided in Figure 2. The precise
definition is given below.

DEFINITION 2.2. Consider a point on the lattice Z
2, with two rays emanating

from it, such that the angle between those rays is positive but smaller than π .
These two rays bound a convex subset of R

2. A cone �⊂B consists of all bonds
that intersect the interior of this convex area.

Next, we consider paths. Let x, y be two points in the lattice Z
2. One can con-

sider finite paths consisting of bonds between these points. Similarly, one can con-
sider two plaquettes, or equivalently, two points on the dual lattice. A dual path is
a path on the dual lattice between two points. We identify such a dual path ξ̂ with
the bonds b ∈B that are crossed by this dual path. Corresponding with such paths
there are string operators.1

DEFINITION 2.3. Suppose ξ (respectively, ξ̂ ) is a finite path on the lattice
(respectively, dual lattice). We define the corresponding string operators by

Fξ :=
⊗

i∈ξ

σ z
i , F̂ξ :=

⊗

i ∈̂ξ

σ x
i .

We will usually not distinguish between string operators corresponding to paths
and those corresponding to dual paths. Note that by the properties of Pauli

1Note that we use notation different from Ref. [14].
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matrices, it is clear that string operators are self-adjoint, and that if F1, F2 are
string operators, they either commute or anti-commute.

Now suppose that ξ is a path that does not intersect itself. Then one sees that
Fξ commutes with all star operators As , except for those corresponding to the
star based at the endpoints of ξ . Clearly Fξ commutes with all plaquette opera-
tors. Considering the definition of the local Hamiltonians, Fξ� can be interpreted
as a state vector describing a pair of excitations at the endpoints of ξ . A similar
argument holds for paths on the dual lattice, where the excitations are located at
plaquettes, and we have anti-commutation with the corresponding plaquette oper-
ators.

Recall that if ξ is a closed path, the corresponding operator Fξ can be written as
a product of plaquette operators [14], hence ω(Fξ )=1 by Lemma 2.1. Similarly, if
ξ is a closed dual path, Fξ is a product of star operators. From this it follows that
π(Fξ )�=� for closed paths ξ . As an easy consequence, consider two paths ξ and
ξ ′ with the same endpoints. Then we have ω((Fξ − Fξ ′)∗(Fξ − Fξ ′))=0, because the
cross-term Fξ Fξ ′ is precisely the string operator corresponding to the loop formed
by ξ and ξ ′. Hence π(Fξ )�=π(Fξ ′)�. In physical terms this means that the exci-
tations created do not depend on the path ξ , but only on its endpoints.

As we will see later, we will investigate excitations that appear near the edges
of a cone �. Recall that a cone is described by two rays. These lines allow us to
define what exactly is the boundary of a cone.

DEFINITION 2.4. A vertex v lies on the boundary of � if and only if either v

lies on one of the two rays or v lies outside the convex area bounded by the two
rays and is one of the endpoints of a bond b ∈�. A plaquette p is at the bound-
ary of � if and only if some, but not all, bonds that enclose the plaquette are con-
tained in �. The boundary of the complement �c of a cone is defined to be equal
to the boundary of �.

3. Haag Duality

Recall that π is the GNS representation defined by the ground state. Suppose that
� is a cone. We can consider the von Neumann algebra generated by the observ-
ables localized in this cone, R� := π(A(�))′′, and similarly the algebra R�c :=
π(A(�c))′′ generated by observables localized in the complement of �. From local-
ity it follows that R� ⊂R′

�c . Haag duality is the statement that the reverse inclu-
sion is also true, i.e.

π(A(�))′′ =π(A(�c))′. (3.1)

Our main result is that this is the case for the toric code model.
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THEOREM 3.1. Let � be a cone. Then in the ground state representation we have
Haag duality, π(A(�))′′ =π(A(�c))′.

The basic idea behind the proof is to first reduce the problem to one of alge-
bras acting on a Hilbert space H� ⊂H. This Hilbert subspace can be interpreted
as the space of states with excitations localized in �. Before we proceed, first note
that π is a representation of a UHF (and hence simple) algebra, from which it is
clear that π is faithful. This makes it possible to identify π(A) with A, for A ∈A,
and we will do so from now on.

DEFINITION 3.2. Let � be a cone. If ξ is a path on the lattice, we say that it
is contained in � if ξ ⊂�. A path ξ on the dual lattice is contained in � if each
bond that intersects the dual path is in �. With this convention, we define

F� ={Fξ : ξ is a path (or dual path) in �},

and similarly for F�c .

The operators in F� create excitations in �. Since �∪�c =B, one would expect
that the operators in F� and F�c generate H by acting on the ground state vector
�. This is indeed the case:

LEMMA 3.3. The closure of span{F1 · · · Fm F̂1 · · · F̂n� : Fi ∈ F�, F̂j ∈ F�c } is equal
to H.

Proof. Let b ∈ B and consider the path ξ = {b} and the dual path ξ̂ of length
one crossing this bond. Then I, Fξ , F̂ξ and Fξ F̂ξ span the algebra M2(C) acting
on this bond. By considering more bonds, one sees that all local operators can be
obtained in this way, from which the statement follows since the local operators
are dense in A, and � is cyclic for π(A) by the GNS construction.

Next, we consider the Hilbert space of all excitations localized in �.

DEFINITION 3.4. Consider the closure of span{F1 · · · Fk� : Fi ∈ F�} and let P�

be the projection onto this subspace of H. We write H� for the Hilbert space
H� = P�H.

LEMMA 3.5. We have A(�)H� ⊂H�. In fact, A ∈A(�)′′ is completely determined
by its restriction to H�.

Proof. The algebra A(�)loc is generated by operators Fξ for paths (and dual
paths) ξ contained in �. Such operators clearly map the linear subspace spanned
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by vectors of the form F1 · · · Fk� (Fi ∈F�) into itself. Since this space is dense in
H�, and A(�)loc is dense in A(�), the first claim follows.

The second claim follows from the fact that if AB = 0 for A ∈R with R a fac-
tor, and B ∈R′, then either A or B is zero [10, Thm. 5.5.4]. Since A(�)′′ is a fac-
tor [14] and P� ∈A(�)′ by the previous part, the result follows. There is also an
easy direct proof. We give it here since we will use a similar argument later on.
Let A1, A2 ∈A(�) and suppose that A1ξ = A2ξ for every ξ ∈H�. Now consider η=
F̂1 · · · F̂m F1 · · · Fn�∈H, where again Fi ∈F� and F̂j ∈F�c . Then, we have

A1η= F̂1 · · · F̂m A1 F1 · · · Fn�= F̂1 · · · F̂m A2 F1 · · · Fn�= A2η.

Since vectors of this form are dense in H, the claim follows. If A ∈ A(�)′′, the
statement follows in precisely the same way, since by locality we have A(�)′′ ⊂
A(�c)′.

Consider now the algebra A(�c) of observables localized in the complement of
�. We want to show Haag duality, i.e. Equation (3.1), so A(�c)′ should map H�

into itself. This is indeed the case, as the following lemma demonstrates.

LEMMA 3.6. We have that A(�c)′H� ⊂H�.

Proof. Let B ′ ∈ A(�c)′. Suppose ζ = F1 · · · Fn� with Fi ∈ F� and let η =
F̂1 · · · F̂k F�, where F̂i ∈F�c and F is a product of operators in F�. We will show
that (η, B ′ζ ) = 0 if η ∈ H⊥

�. Since the span of such vectors ζ (respectively, η) is
dense in H� (respectively, H), the claim will follow. Now suppose that there is star
s such that s ⊂�c and such that As anti-commutes with F̂1 · · · F̂k . Then, by local-
ity and equation (2.1),

(η, B ′ζ )= (η, B ′ Asζ )= (Asη, B ′ζ )=−(η, B ′ζ ),

hence η is orthogonal to B ′ζ . A similar argument works for plaquette operators
Bp ∈A(�c).

The case remains where no such plaquette or star operator exists. We claim that
in this case, in fact η ∈H�. First of all, note that any loops formed by the paths
ξ̂i (corresponding to F̂i ) can be eliminated. Indeed, if ξ1, . . . ξk forms a loop, then
F̂1 · · · F̂k is a product of either star or plaquette operators (see the end of Sec-
tion 2). By commuting them with the other operators, and using Equation (2.1),
these can be eliminated, possibly at the expense of an overall minus sign. Similarly,
if some of the paths ξ̂i can be combined to a bigger path, we might as well replace
the string operators with the string operator of the bigger path.

Arguing like this, without loss of generality we can assume that the F̂i all
correspond to different paths with mutually disjoint endpoints. It follows that
the star and plaquette operators based at these endpoints anti-commute with
F̂1 · · · F̂k . By the assumption on η, this implies that all endpoints must lie on
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the boundary of �. Therefore, suppose that ξ̂i is a path with endpoints on the
boundary of �. Then there is a path ξ ′

i inside � with the same endpoints. If Fi ′
is the corresponding string operator, then F̂i�= Fi ′�. Continuing in this manner,
it follows that η= F Fk′ · · · F1′�. Hence η∈H�, completing the proof.

Since the lemma implies that P� ∈A(�c)′′, we obtain the following corollary.

COROLLARY 3.7. The projection P� is contained in R�c .

We now consider ∗-algebras A� and B� acting on H�. Any operator A∈A(�)′′
restricts to an operator on H� by Lemma 3.5. Define an algebra A� by restrict-
ing the operators of A(�)′′ to H�. This is in fact a von Neumann algebra, that is,
A� =A′′

� (as subalgebras of B(H�)). This can be argued, for example, as in the
proof of Prop. II.3.10 of Ref. [17].

The algebra B� is defined in a similar way: the operators in P�R�c P� leave H�

invariant, hence we can restrict P�R�c P� to a ∗-algebra acting on H�. This alge-
bra will be denoted by B� and is a von Neumann algebra by the proposition cited
above. Note that both A� and B� act non-degenerately on H� and that � is cyclic
for A�.2 The self-adjoint part of A� (respectively, B�) is denoted by A�,s (respec-
tively, B�,s). The following Lemma is the crucial step in the proof of Haag duality.

LEMMA 3.8. The set A�,s�+ iB�,s� is dense in H�.

Proof. First, we observe that since As and Bs are real vector spaces, it is suf-
ficient to show that vectors of the form F� and i F�, where F is a product of
operators in F�, are contained in A�,s�+ iB�,s�. So suppose that F = F1 · · · Fn

with Fi ∈F�. Note that F∗
i = Fi , and that Fi , Fj either commute or anti-commute.

But this means that F∗ =±F . If F∗ = F , clearly F ∈A�,s . In the other case i F is
self-adjoint, hence i F ∈A�,s .

Now, suppose that there is either a star operator As ∈A� or a plaquette opera-
tor Bp ∈ A� that anti-commutes with F . In the case that F = F∗, it follows that
i As F (or i Bp F) is self-adjoint. But i As F� = −i F As� = −i F�, so that we can
obtain real linear combinations of i F�. In the case that F∗ = −F , one can use
the fact that As F is self-adjoint to obtain real multiples of F�. Combining these
results, we obtain vectors of the form λF�, with λ∈C.

One issue remains: operators As or Bp (contained in A�) that anti-commute
with F need not exist. But if this is the case, then F� can only have excitations
at the boundary of �, by the same reasoning as in the proof of Lemma 3.6. By
the same proof, note that there is F̂ ∈B� such that F̂�= F�. One also sees that
if F = F∗, then also F̂ = F̂∗, arguing as follows. Let F1, F2 be the string opera-
tors corresponding to paths ξ1, ξ2 in �, with endpoints at the boundary of �. Now
choose corresponding paths ξ ′

1 and ξ ′
2 in �c with path operators F1′ and F2′ . If the

2In fact, one can show that � is separating for B�, but we will not need this fact.
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paths ξ1, ξ2 are of the same type, F1 and F2 commute, and so will F1′ and F2′ . If
they are of different type, they commute if and only if ξ1 and ξ2 intersect an even
number of times. Otherwise they will anti-commute. Note that ξ1 ∪ ξ ′

1 is a loop,
and similarly for ξ2 ∪ ξ ′

2. But a loop on the lattice and a loop on the dual lattice
always intersect an even number of times. From this, it follows that if ξ1 and ξ2

intersect an even (odd) number of times, the same is true for ξ ′
1 and ξ ′

2. It follows
that F1 and F2 (anti-)commute if and only if F1′ and F2′ do so. In other words,
if F1 F2 (respectively, i F1 F2) is self-adjoint, then so is F1′ F2′ (respectively, i F1′ F2′ ).
Continuing in this way, it is clear that complex multiples of F� are contained in
A�,s�+ iB�,s�, which finishes the proof.

We are now in a position to prove the main theorem.

Proof of Theorem 3.1. As was mentioned before, using locality one obtains the
inclusion π(A(�))′′ ⊂π(A(�c))′. To prove the reverse inclusion, we first note that
A� and B′

� generate each other’s commutant (in B(H�)), by Lemma 3.8 and a
result of Rieffel and van Daele [15, Thm. 2], which says in fact that the claim
on the commutants is equivalent to the statement in Lemma 3.8. In other words,
A� =B′

� as von Neumann algebras acting on H�.
In order to prove π(A(�c))′ ⊂π(A(�))′′, first note that B� is the reduced von

Neumann algebra (R�c )P� , obtained by restricting P�R�c P� to H�. Consider an
element B ′ ∈ R′

�c . By [17, Prop. II.3.10], the commutant of B� is equal to R′
�c

restricted to H�. Write B ′
� for the restriction of B ′ to H�. Then B ′

� ∈B′
� =A′′

� =
A�. By Lemma 3.5 and the remarks following Corollary 3.7, there is a unique Â∈
R� such that Â|H�

= B ′
�. Let ξ = F̂ F�∈H, where F̂ (respectively, F) is a product

of operators in F�c (respectively, F�). Then

B ′ξ = F̂ B ′F�= F̂ B ′
�F�= F̂ ÂF�= ÂF̂ F�= Âξ,

so that Â = B ′ and hence B ′ ∈π(A(�))′′ =R�.

4. Distal Split Property

If � is a cone, the von Neumann algebra R� is a factor of Type II∞ or Type
III [14]. If we have two cones �1 ⊂ �2, then clearly R�1 ⊂ R�2 . The distal split
property then says that if the boundaries of the cones �1 and �2 are well sepa-
rated, then there is in fact a Type I factor N sitting between these two algebras,
R�1 ⊂N ⊂R�2 . To make this precise, we recall the following Definition [14]:

DEFINITION 4.1. For two cones �1 ⊂�2, write �1 ��2 if any star or plaquette
in �1 ∪�c

2 is either contained in �1 or in �c
2. We say that ω satisfies the distal split

property for cones if for any pair of cones �1 ��2 there is a Type I factor N such
that R�1 ⊂N ⊂R�2 .
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For the toric code model we are considering, the distal split property in fact fol-
lows from Haag duality [14, Thm. 5.2]. Here we give another, more direct proof.
For the remainder of this section, fix two cones �1 ��2. The idea is to use a uni-
tary operator U to write H as a tensor product of three Hilbert spaces, in such a
way that UR�1U∗ acts on the first tensor factor. Similarly, UR�c

2
U∗ acts on the

second tensor factor, and from this one can find an interpolating Type I factor.
There is some redundancy in the description of the Hilbert space H as the linear

span of vectors obtained by acting with path operators on the ground state vector
�. For example, as mentioned before, Fξ1�= Fξ2� if ξ1 and ξ2 are paths with the
same endpoints. This is rather inconvenient when defining operators acting on H,
and therefore we will find a more economical description.

To achieve this, we will have to choose certain paths in �0 :=B\ (�1 ∪�c
2). Note

that this set is non-empty, since �1 � �2. Choose a point in the lattice on the
boundary of �1, one on the boundary of �2, and a path ξb

1 ⊂�0 between these
points. Similarly, choose plaquettes on the boundary of �1, respectively �2, and
a dual path ξb

2 ⊂ �0 between these plaquettes. Label the vertices and plaquettes
in the interior of �0 (i.e. those vertices and plaquettes not on the boundary of
�1 or �c

2) by a set I . If I is non-empty, fix a vertex v and a plaquette p in I .
Let ξv and ξp be paths in �0 from v (respectively, p) to the boundary of �1. For
each i ∈ I \ {v, p}, choose a path inside �0 from i to either v or p. Thus we have
obtained a collection  := {ξb

1 , ξb
2 }∪ {ξi : i ∈ I } of paths. For each ξ ∈ there is the

corresponding path operator F̂ξ .

DEFINITION 4.2. Let {F̂ξ }ξ∈ be as above and set F0 ={Fξ1 · · · Fξk : ξi ∈}. The
Hilbert space H0 is defined as the closure of span F0�.

The dimension of H0 depends on the number of stars and plaquettes there are
in the region �2 ∩�c

1. In general this means that H0 is infinite dimensional. How-
ever, one can consider, for example, a cone �2 based in the origin and bounded by
the lines y = x and y =−x (any of the four possibilities will do). If one chooses �1

to be the cone with parallel edges such that the distance between the two apexes is
one, then �1 ��2 and �2 ∩�c

1 contains no stars or plaquettes. In this case, H0 is
finite-dimensional: F0 consists of I and the operators corresponding to the chosen
path and dual path (and their product). Hence H0 has dimension four.

The construction of H0 is perhaps somewhat involved, but it suggests a con-
venient description of H. Analogously to F0, we define the set F�1 by F�1 =
{F1 · · · Fn : Fi ∈F�1} and in the same way F�c

2
.

LEMMA 4.3. The set span F�1F0F�c
2
� is dense in H.

Proof. By Lemma 3.3, vectors of the form Fξ1 · · · Fξn � span a dense subset of H.
Note that we can permute the order of the operators Fξi , possibly at the expense
of an overall sign. But this implies that it is enough to show that for a path ξ , Fξ�

is of the desired form. Suppose for the sake of argument that ξ is a path on the
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lattice. If both endpoints of the path – call them v1 and v2 – are in either �1 or
�c

2, the claim is clear. If v1 is in �0 and v2 in �1 or �c
2, consider the path ξv1 ∪ξv

from v1 to the boundary of �1. If v2 is in �1, choose a path ξ̃ from this boundary
point to v2. Then we have Fξ�= F̂ξv1

F̂ξv Fξ̃�, which is of the desired form. If v2 is
in �c

2 then one can form the following path: first go from v1 to the boundary of
�1 as above. Then choose a path in �1 from the endpoint of ξv to the endpoint of
either ξb

1 or ξb
2 and use this path to go to �c

2. From there one can choose a path
from the boundary to v2 and we are done. The remaining cases can be handled in
a similar way.

The proof actually implies that every vector of the form Fξ1 · · · Fξn � can be writ-
ten (up to an overall sign) as F1 F̂ F2�. We say that a vector is in canonical form
if it is represented in this way. The point is that some of the redundancy in the
description is removed: if F1 F̂ F2�=±F ′

1 F̂ ′F ′
2� for F1, F ′

1 ∈F�1, F2, F ′
2 ∈F�c

2
and

F̂, F̂ ′ ∈F0 then in fact F̂ =±F̂ ′.

LEMMA 4.4. Suppose that �1 � �2 are two cones. If F1 F̂ F2� is in canonical
form, define

U F1 F̂ F2�= F1�⊗ F2�⊗ F̂�. (4.1)

Then U extends to a unitary operator H→H�1 ⊗H�c
2
⊗H0, where H�1 ,H�c

2
, and

H0 are the Hilbert spaces defined above.

Proof. We first prove that U defines an isometry, from which it is clear that U is
well-defined. Suppose that η1 = F1 F̂ F2� and η2 = F ′

1 F̂ ′F ′
2� are in canonical form.

It is enough to show that (η1, η2)= (Uη1,Uη2). First suppose that F̂ �=±F̂ ′. Then
there is some star or plaquette operator that commutes with F̂ , but anti-commutes
with F̂ ′ (or vice-versa), hence ω(F̂∗ F̂)=0, and therefore (Uη1,Uη2)=0. We claim
that in this case (η1, η2) = 0. If there is a vertex or plaquette in the interior of
�0 where F̂ creates an excitation but F̂ does not (or vice versa), this equality is
clear since then there is a star (or plaquette) operator that commutes with R�1

and R�c
2
, but anti-commutes with either F̂ or F̂ ′. So suppose that this is not the

case. Then Fξb
1

or Fξb
2

is necessarily a factor in either F̂ or F̂ ′, say F̂ . But then

F1 F̂ F2� has an odd number of excitations localized in �1 or at its boundary. The
same holds for �c

2. On the other hand, F ′
1 F̂ ′F ′

2� has an even number of excitations
it both these regions. So there must be at least one place where one vector has an
excitation and the other one does not. But this implies that (η1, η2)=0 as before.

Hence without loss of generality we can assume that F̂ = F̂ ′ and the problem
reduces to showing that ω(F∗

1 F ′
1 F∗

2 F ′
2) = ω(F∗

1 F ′
1)ω(F∗

2 F ′
2). This equality can be

obtained as follows: if there is a star or plaquette operator that anti-commutes
with any of the operator Fi , F ′

i and commutes with the others, both sides are zero
by the same reasoning as used before. If this is not the case, this implies that F∗

1 F2
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and F̂∗
1 F̂2 correspond to products of path operators of closed loops, and it fol-

lows that both sides are equal to plus or minus one. The sign has to be equal at
both sides, since F1, F ′

1 and F2, F ′
2 commute. The range of U is clearly dense in

H�1 ⊗H�c
2
⊗H0, hence U extends to a unitary operator.

This unitary gives the desired decomposition of H as a tensor product of Hilbert
spaces. The proof of the main theorem of this section now amounts to showing
that R�1 and R�2 act on this tensor product in the desired way.

THEOREM 4.5. Suppose that �1 ��2 and let U be the unitary defined as above.
If N =U∗(B(H�1)⊗ I ⊗ I )U , then N is a Type I factor such that R�1 ⊂N ⊂R�2 .

Proof. It is clear that N is a Type I factor, hence it remains to show the inclu-
sions. We will show that UR�1U∗ =R�1 P�1 ⊗ I ⊗ I and similarly UR′

�2
U∗ = I ⊗

R′
�2

P�c
2
⊗ I , where R�1 P�1 is the von Neumann algebra R�1 restricted to H�1 .

It follows that R�1 ⊂N . For the second inclusion, note that

UR′′
�2

U∗ = (I ⊗R′
�2

P�c
2
⊗ I )′ =B(H�1)⊗ P�c

2
R′′

�2
P�c

2
⊗B(H0),

and hence N ⊂R′′
�2

=R�2 .
Note that if η ∈ H�1 and F ∈ F�c

2
, F̂ ∈ F0 then F̂ Fη ∈ H and by definition

U F̂ Fη = η ⊗ F� ⊗ F̂� and similarly for η ∈ H�c
2
. To finish the proof, first recall

that by Lemma 3.5, R�1H�1 ⊂H�1 . In a similar way, one shows that R′
�2

=R�c
2

maps H�c
2

into itself. Now, suppose that A ∈ R�1 and η := F1� ⊗ F2� ⊗ F̂� ∈
H�1 ⊗H�c

2
⊗H0. By locality A commutes with F2 and F̂ . One then finds

U AU∗η=U AF1 F̂ F2�=U F̂ F2 AF1�=U F̂ F2 P�1 AP�1 F1�

= A|�1 F1�⊗ F2�⊗ F̂�= (
A|�1 ⊗ I ⊗ I

)
η.

Since vectors of the form η span a dense set, the claim for UR�1U∗ follows. A
similar argument then shows the corresponding claim for R′

�2
, which concludes

the proof.

One can in fact set N1 := N and N2 := U∗(B(H�1) ⊗ I ⊗ B(H0))U and it fol-
lows that R�1 ⊂N1 ⊂N2 ⊂R�2 . This inclusion of two Type I factors is also found
in the case of the free neutral massive scalar field in algebraic quantum field the-
ory, discussed by Buchholz [4, Corr. 2.4].

Note that in the case that R�1 and R�2 are semi-finite, the construction here
is an explicit example of the construction in the proof of [7, Cor. 1(iv)]. Indeed,
consider R�1 ⊗R′

�2
. Then there is an amplification R�1 ⊗R′

�2
⊗ I acting on the

Hilbert space H ⊗ H ⊗ H. Let P0 be the projection onto H0. If one reduces the
amplification by the projection P�1 ⊗ P�c

2
⊗ P0 ∈R′

�1
⊗R�2 ⊗B(H) and conjugates

with the unitary U , one obtains a normal faithful representation of R�1 ⊗ R′
�2

onto R�1 ∨R′
�2

.
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