12 research outputs found

    Antioxidant Efficacy of Olive By-Product Extracts in Human Colon HCT8 Cells

    Get PDF
    The production of olive oil is accompanied by the generation of a huge amount of waste and by-products including olive leaves, pomace, and wastewater. The latter represents a relevant environmental issue because they contain certain phytotoxic compounds that may need specific treatments before the expensive disposal. Therefore, reducing waste biomass and valorizing by-products would make olive oil production more sustainable. Here, we explore the biological actions of extracts deriving from olive by-products including olive pomace (OP), olive wastewater (OWW), and olive leaf (OLs) in human colorectal carcinoma HCT8 cells. Interestingly, with the same phenolic concentration, the extract obtained from the OWW showed higher antioxidant ability compared with the extracts derived from OP and OLs. These biological effects may be related to the differential phenolic composition of the extracts, as OWW extract contains the highest amount of hydroxytyrosol and tyrosol that are potent antioxidant compounds. Furthermore, OP extract that contains a higher level of vanillic acid than the other extracts displayed a cytotoxic action at the highest concentration. Together these findings revealed that phenols in the by-product extracts may interfere with signaling molecules that cross-link several intracellular pathways, raising the possibility to use them for beneficial health effects

    Macro- and Micro-Nutrient Composition and Antioxidant Activity of Chickpea and Pea Accessions

    Get PDF
    Epidemiological studies reported an inverse association between the consumption of legumes and the incidence of age-related diseases. This trend could be attributed to the presence of antioxidant compounds, especially phenolic and flavonoid compounds. In this paper, five pea (Pisum sativum L.) and twelve chickpea (Cicer arietinum L.) accessions, having different characteristics and geographical origin, were characterised in terms of antioxidant activity, as well as macro- and micro-nutrient composition. The antioxidant activity has been evaluated using both DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging capacity assays. Chickpea and pea accessions showed a different behaviour in the presence of these different radicals. Chickpea accessions were characterised by significantly higher DPPH• scavenging activity, while peas showed a significantly higher value of antioxidant activity evaluated using the ABTS assay. Pea accessions had the highest content of total phenolic compounds, Zn, and Cu. A positive correlation was found between some minerals, such as Zn, Cu and P, and the ABTS•+ scavenging activity. Black and brown chickpea accessions showed significantly higher contents of anthocyanins, Mn, Mg, and Ca, which were positively correlated with the antioxidant activity assessed with the DPPH assay. Despite the dataset investigated in our study included a limited number of accessions, it was possible to highlight the influence of the chemical composition on the antioxidant activity due to the high phenotypic diversity found between the accessions, emphasising the importance of selecting the antioxidant activity assay according to the matrix to be evaluated

    β-Arrestin1 and β-Arrestin2 are required to support the activity of the CXCL12/HMGB1 heterocomplex on CXCR4

    Get PDF
    The chemokine receptor CXCR4 plays a fundamental role in homeostasis and pathology by orchestrating recruitment and positioning of immune cells, under the guidance of a CXCL12 gradient. The ability of chemokines to form heterocomplexes, enhancing their function, represents an additional level of regulation on their cognate receptors. In particular, the multi-faceted activity of the heterocomplex formed between CXCL12 and the alarmin HMGB1 is emerging as an unexpected player able to modulate a variety of cell responses, spanning from tissue regeneration to chronic inflammation. Nowadays, little is known on the selective signaling pathways activated when CXCR4 is triggered by the CXCL12/HMGB1 heterocomplex. In the present work, we demonstrate that this heterocomplex acts as a CXCR4 balanced agonist, activating both G protein and β-arrestins-mediated signaling pathways to sustain chemotaxis. We generated β-arrestins knock out HeLa cells by CRISPR/Cas9 technology and show that the CXCL12/HMGB1 heterocomplex-mediated actin polymerization is primarily β-arrestin1 dependent, while chemotaxis requires both β- arrestin1 and β-arrestin2. Triggering of CXCR4 with the CXCL12/HMGB1 heterocomplex leads to an unexpected receptor retention on the cell surface, which depends on β-arrestin2. In conclusion, the CXCL12/HMGB1 heterocomplex engages the β-arrestin proteins differently from CXCL12, promoting a prompt availability of CXCR4 on the cell surface, and enhancing directional cell migration. These data unveil the signaling induced by the CXCL12/HMGB1 heterocomplex in view of identifying biased CXCR4 antagonists or agonists targeting the variety of functions it exerts
    corecore