15,336 research outputs found

    Imaging crystal orientations in multicrystalline silicon wafers via photoluminescence

    Get PDF
    We present a method for monitoring crystal orientations in chemically polished and unpassivated multicrystalline silicon wafers based on band-to-band photoluminescence imaging. The photoluminescence intensity from such wafers is dominated by surface recombination, which is crystal orientation dependent. We demonstrate that a strong correlation exists between the surface energy of different grain orientations, which are modelled based on first principles, and their corresponding photoluminescence intensity. This method may be useful in monitoring mixes of crystal orientations in multicrystalline or so-called “cast monocrystalline” wafers.H. C. Sio acknowledges scholarship support from BT Imaging and the Australian Solar Institute, and the Centre for Advanced Microscopy at ANU for SEM access. This work has been supported by the Australian Research Council

    The effect of discrete breathers on heat conduction in nonlinear chains

    Full text link
    Intensive studies in the past decades have suggested that the heat conductivity κ\kappa diverges with the system size LL as κLα\kappa\sim L^{\alpha} in one dimensional momentum conserving nonlinear lattices and the value of α\alpha is universal. But in the Fermi-Pasta-Ulam-β\beta lattices with next-nearest-neighbor interactions we find that α\alpha strongly depends on γ\gamma, the ratio of the next-nearest-neighbor coupling to the nearest-neighbor coupling. We relate the γ\gamma-dependent heat conduction to the interactions between the long-wavelength phonons and the randomly distributed discrete breathers. Our results provide an evidence to show that the nonlinear excitations affect the heat transport.Comment: 4 pages, 5 figure

    Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation

    Get PDF
    In normal human diploid fibroblasts, cyclins of the A, B, and D classes each associate with cyclin-dependent kinases (CDKs), proliferating cell nuclear antigen (PCNA), and p21, thereby forming multiple independent quaternary complexes. Upon transformation of diploid fibroblasts with the DNA tumor virus SV40, or its transforming tumor antigen (T), the cyclin D/p21/CDK/PCNA complexes are disrupted. In transformed cells, CDK4 totally dissociates from cyclin D, PCNA, and p21 and, instead, associates exclusively with a polypeptide of 16 kD (p16). Quaternary complexes containing cyclins A or B1 and p21/CDK/PCNA also undergo subunit rearrangement in transformed cells. Both PCNA and p21 are no longer associated with CDC2-cyclin B1 binary complexes. Cyclin A complexes no longer contain p21, and a new 19-kD polypeptide (p19) is found in association with cyclin A. The pattern of subunit rearrangement of cyclin-CDK complexes in SV40-transformed cells is also shared in those containing adeno- or papilloma viral oncoproteins. Rearrangement also occurs in p53-deficient cells derived from Li-Fraumeni patients that carry no known DNA tumor virus. These findings suggest a mechanism by which oncogenic proteins alter the cell cycle of transformed cells

    Inverse Magnetoresistance of Molecular Junctions

    Full text link
    We present calculations of spin-dependent electron transport through single organic molecules bridging pairs of iron nanocontacts. We predict the magnetoresistance of these systems to switch from positive to negative with increasing applied bias for both conducting and insulating molecules. This novel inverse magnetoresistance phenomenon is robust, does not depend on the presence of impurities, and is unique to molecular and atomic nanoscale magnetic junctions. Its physical origin is identified and its relevance to experiment and to potential technological applications is discussed.Comment: 5 pages, 3 figures; published version Phys. Rev.

    Conductance Correlations Near Integer Quantum Hall Transitions

    Full text link
    In a disordered mesoscopic system, the typical spacing between the peaks and the valleys of the conductance as a function of Fermi energy EFE_F is called the conductance energy correlation range EcE_c. Under the ergodic hypothesis, the latter is determined by the half-width of the ensemble averaged conductance correlation function: F=F= . In ordinary diffusive metals, EcD/L2E_c\sim D/L^2, where DD is the diffusion constant and LL is the linear dimension of the phase-coherent sample. However, near a quantum phase transition driven by the location of the Fermi energy EFE_F, the above picture breaks down. As an example of the latter, we study, for the first time, the conductance correlations near the integer quantum Hall transitions of which EFE_F is a critical coupling constant. We point out that the behavior of FF is determined by the interplay between the static and the dynamic properties of the critical phenomena.Comment: 4 pages, 4 figures, minor corrections, to appear in Phys. Rev. Let

    Superconducting quantum phase transitions tuned by magnetic impurity and magnetic field in ultrathin a-Pb films

    Full text link
    Superconducting quantum phase transitions tuned by disorder (d), paramagnetic impurity (MI) and perpendicular magnetic field (B) have been studied in homogeneously disordered ultrathin a-Pb films. The MI-tuned transition is characterized by progressive suppression of the critical temperature to zero and a continuous transition to a weakly insulating normal state with increasing MI density. In all important aspects, the d-tuned transition closely resembles the MI-tuned transition and both appear to be fermionic in nature. The B-tuned transition is qualitatively different and probably bosonic. In the critical region it exhibits transport behavior that suggests a B-induced mesoscale phase separation and presence of Cooper pairing in the insulating state.Comment: 17 pages, 4 figure
    corecore