4 research outputs found

    Towards Uniform Gene Bank Documentation In Europe – The Experience From The EFABISnet Project

    Get PDF
    In the EFABISnet project, a collaborative effort of EAAP, FAO and partners from 14 European countries, in cooperation with the European Regional Focal Point for Animal Genetic Resources (ERFP), national information systems for monitoring the animal genetic resources on breed level were established in Austria, Cyprus, Estonia, Georgia, Iceland, Ireland, Italy, Netherlands, Slovakia, Slovenia, Switzerland, and United Kingdom. The network was soon extended beyond the project plans, with the establishment of EFABIS databases in Finland, Greece, and Hungary. The network was then complemented by a set of inventories of national gene bank collections to strengthen the documentation of ex situ conservation programmes. These documentation systems were established by the National Focal Points for management of farm animal genetic resources. Here we present the experience gained in establishment of these national inventories of gene banks and their relevance to the Strategic Priority Areas of the Global Plan of Action which could be useful for other areas in the world

    Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H)

    Get PDF
    We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700-1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were interpreted with reference to the composition of modern sheep wool from the same regions. The isotopic composition of wool and bone collagen samples clustered strongly by settlement; inter-regional relationships were largely parallel in modern and ancient samples, though landscape change was also significant. Degradation in archaeological wool samples, examined by elemental and amino acid composition, was greater in samples from Iceland (Reykholt) than in samples from north-east England (York, Newcastle) or northern Germany (Hessens). A nominal assignment approach was used to classify textiles into local/non-local at each site, based on maximal estimates of isotopic variability in modern sheep wool. Light element stable isotope analysis provided new insights into the origins of wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to understand the location of origin of archaeological protein samples
    corecore