90 research outputs found

    Functional characterization of recombinant chloroplast signal recognition particle

    Get PDF
    The signal recognition particle (SRP) is a ubiquitous system for the targeting of membrane and secreted proteins. The chloroplast SRP (cpSRP) is unique among SRPs in that it possesses no RNA and is functional in post-translational as well as co-translational targeting. We have expressed and purified the two components of the Arabidopsis thaliana chloroplast signal recognition particle (cpSRP) involved in post-translational transport: cpSRP54 and the chloroplast-specific protein, cpSRP43. Recombinant cpSRP supports the efficient in vitro insertion of pea preLhcb1 into isolated thylakoid membranes. Recombinant cpSRP is a stable heterodimer with a molecular mass of approximately 100 kDa as determined by analytical ultracentrifugation, gel filtration analysis, and dynamic light scattering. The interactions of the components of the recombinant heterodimer and pea preLhcb1 were probed using an immobilized peptide library (pepscan) approach. These data confirm two previously reported interactions with the L18 region and the third transmembrane helix of Lhcb1 and suggest that the interface of the cpSRP43 and cpSRP54 proteins is involved in substrate binding. Additionally, cpSRP components are shown to recognize peptides from the cleavable, N-terminal chloroplast transit peptide of preLhcb1. The interaction of cpSRP43 with cpSRP54 was probed in a similar experiment with a peptide library representing cpSPR54. The C terminus of cpSRP54 is essential for the formation of the stable cpSRP complex and cpSPR43 interacts with distinct regions of the M domain of cpSRP54.</p

    Atypical vessels as an early sign of intracardiac myxoma?

    Get PDF
    We report on a woman with previously unknown left atrial myxoma, who underwent percutaneous coronary intervention. 45 months after the initial coronary angiography, echocardiography demonstrated a large atrial myxoma, which was not seen echocardiographically before. The retrospective analysis of the pre-intervention coronary angiography revealed atypical vessels in the atrial septum, which are interpreted as early signs of myxoma

    Development and application of recombinant antibody-based immunoassays to tetraconazole residue analysis in fruit juices

    Full text link
    Tetraconazole is currently used as a fungicide in fruit and vegetables. The aim of this work was the development of immunochemical techniques based on recombinant antibodies for the screening of tetraconazole residues in fruit juices. Recombinant antibodies were produced from a hybridoma cell line secreting a monoclonal antibody specific for tetraconazole and from lymphocytes of mice hyperimmunised with tetraconazole haptens conjugated to bovine serum albumin. From these antibodies, enzyme-linked immunosorbent assays in the conjugate-coated format were developed, which were able to detect tetraconazole standards down to 1 ng/mL. From recovery studies with spiked samples, these immunoassays determined tetraconazole in orange and apple juices with acceptable reproducibility (coefficients of variation below 25%) and recoveries (ranging from 78% to 145%) for a screening technique. The analytical performance of RAb-based immunoassays was fairly similar to that of the MAb-based immunoassays. Due to their simplicity and high sample throughput, the developed recombinant-based immunoassays can be valuable analytical tools for the screening of tetraconazole residues in fruit juices at regulatory levels.This work was funded by Ministerio de EducaciOn y Ciencia (MEC, Spain, Project AGL2002-03266). E. P. was the recipient of a doctoral fellowship from Conselleria d'Educacio (Generalitat Valenciana, Spain).Plana Andani, E.; Moreno Tamarit, MJ.; Montoya Baides, Á.; Manclus Ciscar, JJ. (2014). Development and application of recombinant antibody-based immunoassays to tetraconazole residue analysis in fruit juices. Food Chemistry. 143:205-213. https://doi.org/10.1016/j.foodchem.2013.07.121S20521314

    Suppression of p75 Neurotrophin Receptor Surface Expression with Intrabodies Influences Bcl-xL mRNA Expression and Neurite Outgrowth in PC12 Cells

    Get PDF
    Background: Although p75 neurotrophin receptor (p75NTR) is the first neurotrophin receptor isolated, its diverse physiological functions and signaling have remained elusive for many years. Loss-of-function phenotypic analyses for p75NTR were mainly focused at the genetic level; however these approaches were impacted by off-target effect, insufficient stability, unspecific stress response or alternative active splicing products. In this study, p75NTR surface expression was suppressed for the first time at the protein level by endoplasmic reticulum (ER) retained intrabodies. Results: Three monoclonal recombinant antibody fragments (scFv) with affinities in the low nanomolar range to murine p75NTR were isolated by antibody phage display. To suppress p75NTR cell surface expression, the encoding genes of these scFvs extended by the ER retention peptide KDEL were transiently transfected into the neuron-like rat pheochromocytoma cell line PC12 and the mouse neuroblastoma x mouse spinal cord hybrid cell line NSC19. The ER retained intrabody construct, SH325-G7-KDEL, mediated a downregulation of p75NTR cell surface expression as shown by flow cytometry. This effect was maintained over a period of at least eight days without activating an unfolded protein response (UPR). Moreover, the ER retention of p75NTR resulted in downregulation of mRNA levels of the anti-apoptotic protein Bcl-xL as well as in strong inhibition of NGF-induced neurite outgrowth in PC12 cells. Conclusion: The ER retained intrabody SH325-G7-KDEL not only induces phenotypic knockdown of this p75NTR but als

    Rise and Fall of an Anti-MUC1 Specific Antibody

    Get PDF
    So far, human antibodies with good affinity and specificity for MUC1, a transmembrane protein overexpressed on breast cancers and ovarian carcinomas, and thus a promising target for therapy, were very difficult to generate.A human scFv antibody was isolated from an immune library derived from breast cancer patients immunised with MUC1. The anti-MUC1 scFv reacted with tumour cells in more than 80% of 228 tissue sections of mamma carcinoma samples, while showing very low reactivity with a large panel of non-tumour tissues. By mutagenesis and phage display, affinity of scFvs was increased up to 500fold to 5,7×10(-10) M. Half-life in serum was improved from below 1 day to more than 4 weeks and was correlated with the dimerisation tendency of the individual scFvs. The scFv bound to T47D and MCF-7 mammalian cancer cell lines were recloned into the scFv-Fc and IgG format resulting in decrease of affinity of one binder. The IgG variants with the highest affinity were tested in mouse xenograft models using MCF-7 and OVCAR tumour cells. However, the experiments showed no significant decrease in tumour growth or increase in the survival rates. To study the reasons for the failure of the xenograft experiments, ADCC was analysed in vitro using MCF-7 and OVCAR3 target cells, revealing a low ADCC, possibly due to internalisation, as detected for MCF-7 cells.Antibody phage display starting with immune libraries and followed by affinity maturation is a powerful strategy to generate high affinity human antibodies to difficult targets, in this case shown by the creation of a highly specific antibody with subnanomolar affinity to a very small epitope consisting of four amino acids. Despite these "best in class" binding parameters, the therapeutic success of this antibody was prevented by the target biology

    Semi-automated Magnetic Bead-Based Antibody Selection from Phage Display Libraries

    Get PDF
    Phage display of combinatorial antibody libraries is a very efficient method for selecting recombinant antibodies against a wide range of molecules. It has been applied very successfully for the generation of therapeutic antibodies for more than a decade. To increase robustness and reproducibility of the selection procedure, we developed a semi-automated selection method for the generation of recombinant antibodies from phage display libraries. In this procedure, the selection targets are specifically immobilised to magnetic particles which can then by automatically handled by a magnetic particle processor. At present up to 96 samples can be handled simultaneously. Applying the processor allows standardisation of panning parameters such as washing conditions, incubation times, or to perform parallel selections on same targets under different buffer conditions. Additionally, the whole protocol has been streamlined to carry out bead loading, phage selection, phage amplification between selection rounds and magnetic particle ELISA for confirmation of binding activity in microtiter plate formats. Until now, this method has been successfully applied to select antibody fragments against different types of target, such as peptides, recombinant or homologous proteins, or chemical compounds

    The INNs and outs of antibody nonproprietary names

    No full text
    An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a –mab suffix preceded by a substem indicating the antibody type, e.g., chimeric (-xi-), humanized (-zu-), or human (-u-). The WHO publishes INN definitions that specify how new monoclonal antibody therapeutics are categorized and adapts the definitions to new technologies. However, rapid progress in antibody technologies has blurred the boundaries between existing antibody categories and created a burgeoning array of new antibody formats. Thus, revising the INN system for antibodies is akin to aiming for a rapidly moving target. The WHO recently revised INN definitions for antibodies now to be based on amino acid sequence identity. These new definitions, however, are critically flawed as they are ambiguous and go against decades of scientific literature. A key concern is the imposition of an arbitrary threshold for identity against human germline antibody variable region sequences. This leads to inconsistent classification of somatically mutated human antibodies, humanized antibodies as well as antibodies derived from semi-synthetic/synthetic libraries and transgenic animals. Such sequence-based classification implies clear functional distinction between categories (e.g., immunogenicity). However, there is no scientific evidence to support this. Dialog between the WHO INN Expert Group and key stakeholders is needed to develop a new INN system for antibodies and to avoid confusion and miscommunication between researchers and clinicians prescribing antibodies

    Critical Epitopes in the Nucleocapsid Protein of SFTS Virus Recognized by a Panel of SFTS Patients Derived Human Monoclonal Antibodies

    Get PDF
    BACKGROUND: SFTS virus (SFTSV) is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS) in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs) recognized the nucleocapsid (N) protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. CONCLUSIONS/SIGNIFICANCE: The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection

    Production of scFv-Conjugated Affinity Silk Powder by Transgenic Silkworm Technology

    Get PDF
    Bombyx mori (silkworm) silk proteins are being utilized as unique biomaterials for medical applications. Chemical modification or post-conjugation of bioactive ligands expand the applicability of silk proteins; however, the processes are elaborate and costly. In this study, we used transgenic silkworm technology to develop single-chain variable fragment (scFv)-conjugated silk fibroin. The cocoons of the transgenic silkworm contain fibroin L-chain linked with scFv as a fusion protein. After dissolving the cocoons in lithium bromide, the silk solution was dialyzed, concentrated, freeze-dried, and crushed into powder. Immunoprecipitation analyses demonstrate that the scFv domain retains its specific binding activity to the target molecule after multiple processing steps. These results strongly suggest the promise of scFv-conjugated silk fibroin as an alternative affinity reagent, which can be manufactured using transgenic silkworm technology at lower cost than traditional affinity carriers

    Stabilisation of the Fc Fragment of Human IgG1 by Engineered Intradomain Disulfide Bonds

    Get PDF
    We report the stabilization of the human IgG1 Fc fragment by engineered intradomain disulfide bonds. One of these bonds, which connects the N-terminus of the CH3 domain with the F-strand, led to an increase of the melting temperature of this domain by 10°C as compared to the CH3 domain in the context of the wild-type Fc region. Another engineered disulfide bond, which connects the BC loop of the CH3 domain with the D-strand, resulted in an increase of Tm of 5°C. Combined in one molecule, both intradomain disulfide bonds led to an increase of the Tm of about 15°C. All of these mutations had no impact on the thermal stability of the CH2 domain. Importantly, the binding of neonatal Fc receptor was also not influenced by the mutations. Overall, the stabilized CH3 domains described in this report provide an excellent basic scaffold for the engineering of Fc fragments for antigen-binding or other desired additional or improved properties. Additionally, we have introduced the intradomain disulfide bonds into an IgG Fc fragment engineered in C-terminal loops of the CH3 domain for binding to Her2/neu, and observed an increase of the Tm of the CH3 domain for 7.5°C for CysP4, 15.5°C for CysP2 and 19°C for the CysP2 and CysP4 disulfide bonds combined in one molecule
    corecore