220 research outputs found

    Correlation studies of fission fragment neutron multiplicities

    Full text link
    We calculate neutron multiplicities from fission fragments with specified mass numbers for events having a specified total fragment kinetic energy. The shape evolution from the initial compound nucleus to the scission configurations is obtained with the Metropolis walk method on the five-dimensional potential-energy landscape, calculated with the macroscopic-microscopic method for the three-quadratic-surface shape family. Shape-dependent microscopic level densities are used to guide the random walk, to partition the intrinsic excitation energy between the two proto-fragments at scission, and to determine the spectrum of the neutrons evaporated from the fragments. The contributions to the total excitation energy of the resulting fragments from statistical excitation and shape distortion at scission is studied. Good agreement is obtained with available experimental data on neutron multiplicities in correlation with fission fragments from 235^{235}U(nth_{\rm th},f). At higher neutron energies a superlong fission mode appears which affects the dependence of the observables on the total fragment kinetic energy.Comment: 12 pages, 10 figure

    Microscopic Structure of Rotational Damping

    Get PDF
    The damping of collective rotational motion is studied microscopically, making use of shell model calculations based on the cranked Nilsson deformed mean-field and on residual two-body interactions, and focusing on the shape of the gamma-gamma correlation spectra and on its systematic behavior. It is shown that the spectral shape is directly related to the damping width of collective rotation, \Gammarot, and to the spreading width of many-particle many-hole configurations, \Gammamu. The rotational damping width is affected by the shell structure, and is very sensitive to the position of the Fermi surface, besides mass number, spin and deformation. This produces a rich variety of features in the rotational damping phenomena

    Linear response of light deformed nuclei investigated by self-consistent quasiparticle random-phase-approximation

    Full text link
    We present a calculation of the properties of vibrational states in deformed, axially--symmetric even--even nuclei, within the framework of a fully self--consistent Quasparticle Random Phase Approximation (QRPA). The same Skyrme energy density and density-dependent pairing functionals are used to calculate the mean field and the residual interaction in the particle-hole and particle-particle channels. We have tested our software in the case of spherical nuclei against fully self consistent calculations published in the literature, finding excellent agreement. We investigate the consequences of neglecting the spin-orbit and Coulomb residual interactions in QRPA. Furthermore we discuss the improvement obtained in the QRPA result associated with the removal of spurious modes. Isoscalar and isovector responses in the deformed 24−26{}^{24-26}Mg, 34^{34}Mg isotopes are presented and compared to experimental findings

    Poisson and Porter-Thomas Fluctuations in off-Yrast Rotational Transitions

    Full text link
    Fluctuations associated with stretched E2 transitions from high spin levels in nuclei around 168^{168}Yb are investigated by a cranked shell model extended to include residual two-body interactions. It is found that the gamma-ray energies behave like random variables and the energy spectra show the Poisson fluctuation, in the cranked mean field model without the residual interaction. With two-body residual interaction included, discrete transition pattern with unmixed rotational bands is still valid up to around 600 keV above yrast, in good agreement with experiments. At higher excitation energy, a gradual onset of rotational damping emerges. At 1.8 MeV above yrast, complete damping is observed with GOE type fluctuations for both energy levels and transition strengths(Porter-Thomas fluctuations).Comment: 21 pages, phyzzx, YITP/K-99

    Shell Model for Warm Rotating Nuclei

    Get PDF
    In order to provide a microscopic description of levels and E2 transitions in rapidly rotating nuclei with internal excitation energy up to a few MeV, use is made of a shell model which combines the cranked Nilsson mean-field and the residual surface delta two-body force. The damping of collective rotational motion is investigated in the case of a typical rare-earth nucleus, namely \Yb. It is found that rotational damping sets in at around 0.8 MeV above the yrast line, and the levels which form rotational band structures are thus limited. We predict at a given rotational frequency existence of about 30 rotational bands of various lengths, in overall agreement with the experimental findings. The onset of the rotational damping proceeds quite gradually as a function of the internal excitation energy. The transition region extends up to around 2 MeV above yrast and it is characterized by the presence of scars of discrete rotational bands which extend over few spin values and stand out among the damped transitions, and by a two-component profile in the Eγ−EγE_\gamma -E_\gamma correlation. The important role played by the high-multipole components of the two-body residual interaction is emphasized.Comment: 28 pages, LaTe
    • …
    corecore