23 research outputs found

    Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    Get PDF
    Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 Ă— 10(9) s(-1). Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications

    A combined small- and wide-angle x-ray scattering detector for measurements on reactive systems

    No full text
    A detector with high dynamic range designed for combined small-and wide-angle x-ray scattering experiments has been developed. It allows measurements on single events and reactive systems, such as particle formation in flames and evaporation of levitating drops. The detector consists of 26 channels covering a region from 0.5 degrees to 60 degrees and it provides continuous monitoring of the sampled signal without readout dead time. The time resolution for fast single events is about 40 mu s and for substances undergoing slower dynamics, the time resolution is set to 0.1 or 1 s with hours of continuous sampling. The detector has been used to measure soot particle formation in a flame, burning magnesium and evaporation of a toluene drop in a levitator. The results show that the detector can be used for many different applications with good outcomes and large potential. (C) 2011 American Institute of Physics. [doi:10.1063/1.3613958

    Measuring structural inhomogeneity of a helical conjugated polymer at high pressure and temperature

    No full text
    We report on X-ray scattering measurements of helical poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] by mapping the sample with 10 μm spatial resolution from 0.3 GPa to 36 GPa. We follow the strongest 00l reflection, which moves toward higher scattering angles with pressure indicating planarization of helical polyfluorene. Lateral inhomogeneity is increased for >10 GPa concomitant with the solidification of the pressure transmitting medium (a 4:1 mixture of methanol and ethanol). We also follow the 00l reflection with increasing temperature at the constant pressure of 4.3 GPa in neon. We observe a sharp shift toward higher scattering angles indicative of a phase transition at 167–176 °C

    Measuring structural inhomogeneity of a helical conjugated polymer at high pressure and temperature

    No full text
    We report on X-ray scattering measurements of heli-cal poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] by mapping thesample with 10μm spatial resolution from 0.3 GPa to 36 GPa.We follow the strongest 00lreflection, which moves towardhigher scattering angles with pressure indicating planarizationof helical polyfluorene. Lateral inhomogeneity is increased for>10 GPa concomitant with the solidification of the pressure transmitting medium (a 4:1 mixture of methanol and ethanol) We also follow the 00l reflection with increasing temperature atthe constant pressure of 4.3 GPa in neon. We observe a sharpshift toward higher scattering angles indicative of a phase transi-tion at 167–176C

    Evidence for structural transition in hairy-rod poly[9,9-bis(2-ethylhexyl)fluorene] under high pressure conditions

    No full text
    We report on an x-ray scattering experiment of bulk poly[9,9-bis(2-ethylhexyl)fluorene] under quasihydrostatic pressure from 1 to 11 GPa at room temperature. The scattering pattern of high molecular weight (HMW) polyfluorene (>10 kg/mol) undergoes significant changes between 2 and 4 GPa in the bulk phase. The 110 reflection of the hexagonal unit cell disappears, indicating a change in equatorial intermolecular order. The intensity of the 00 21 reflection drops, with a sudden move toward higher scattering angles. Beyond these pressures, the diminished 00 21 reflection tends to return toward lower angles. These changes may be interpreted as a transition from crystalline hexagonal to glassy nematic phase (perceiving order only in one direction). This transition may be rationalized by density arguments and the underlying theory of phase behavior of hairy-rod polyfluorene. Also the possible alteration of the 21-helical main chain toward more planar main chain conformation is discussed. The scattering of low molecular weight polyfluorene (<10 kg/mol), which is glassy nematic in ambient pressure, is reminiscent with that of HMW polymer above 2–4 GPa

    Structural Changes in Monolayer Cobalt Oxides under Ambient Pressure CO and O2 Studied by In Situ Grazing-Incidence X-ray Absorption Fine Structure Spectroscopy

    Get PDF
    We have used grazing incidence X-ray absorption fine structure spectroscopy at the cobalt K-edge to characterize monolayer CoO films on Pt(111) under ambient pressure exposure to CO and O2, with the aim of identifying the Co phases present and their transformations under oxidizing and reducing conditions. X-ray absorption near edge structure (XANES) spectra show clear changes in the chemical state of Co, with the 2+ state predominant under CO exposure and the 3+ state predominant under O2-rich conditions. Extended X-ray absorption fine structure spectroscopy (EXAFS) analysis shows that the CoO bilayer characterized in ultrahigh vacuum is not formed under the conditions used in this study. Instead, the spectra acquired at low temperatures suggest formation of cobalt hydroxide and oxyhydroxide. At higher temperatures, the spectra indicate dewetting of the film and suggest formation of bulklike Co3O4 under oxidizing conditions. The experiments demonstrate the power of hard X-ray spectroscopy to probe the structures of well-defined oxide monolayers on metal single crystals under realistic catalytic conditions

    AdaptoCell – Microfluidic Platforms at MAX IV Laboratory

    No full text
    In the AdaptoCell project, we are developing microfluidic platforms for X-ray studies of liquid samples. Microfluidics is a suitable technology for samples that are prone to radiation damage, such as proteins. By having the sample underflow, the sample is continuously refreshed, and the risk of radiation damage is reduced. The technology is also suitable for investigating dynamic events such as in situ mixing. The microfluidic platforms are being integrated at three beamlines at MAX IV Laboratory: Balder (X-ray absorption/emission spectroscopy), CoSAXS (small angle x-ray scattering) and MicroMAX (serial synchrotron crystallography). Currently, the platforms are available for users at Balder and CoSAXS, which is under development at MicroMAX. In addition, we also provide a microfluidic offline test station where users can test their samples and optimise their devices before the beam time. The main components of the microfluidic setup are the pressure-driven flow controller and the microfluidic chip. We mainly use commercially available polymer microfluidic chips made of COC (cyclic olefin copolymer). COC is used as a chip material as it has high X-ray transmission and high resistance to radiation damage. There are several different chip designs available such as straight channel chips, droplet generator chips and mixing chips. We believe the AdaptoCell platforms will be useful and versatile sample environments for academic and industrial users at MAX IV Laboratory who want to perform experiments with liquid samples under flow. AdaptoCel

    A Microfluidic Platform for Synchrotron X-ray Studies of Proteins

    No full text
    New tools are needed to allow for complex protein dynamics studies, especially to study proteins in their native states. In the AdaptoCell project a microfluidic platform for academic and industrial users at MAX IV Laboratory is being developed. MAX IV is a Swedish national laboratory providing brilliant synchrotron X-rays for research. Due to the high photon flux, sensitive samples such as proteins are prone to rapid radiation damage; thus, it is advantageous to have the liquid sample underflow to refresh the sample continuously. This, in combination with small volumes, makes microfluidics a highly suitable sample environment for protein studies at MAX IV. The AdaptoCell platform is being integrated at three beamlines:Balder (X-ray absorption/emission spectroscopy), CoSAXS (small angle x-ray scattering) and Micromax (serial synchrotron crystallography). Currently, the platform is fully available atBalder, under commissioning at CoSAXS and being developed for MicroMAX

    Structural Changes in Monolayer Cobalt Oxides under Ambient Pressure CO and O2_2 Studied by In Situ Grazing-Incidence X-ray Absorption Fine Structure Spectroscopy

    No full text
    We have used grazing incidence X-ray absorption fine structure spectroscopy at the cobalt K-edge to characterize monolayer CoO films on Pt(111) under ambient pressure exposure to CO and O2_2, with the aim of identifying the Co phases present and their transformations under oxidizing and reducing conditions. X-ray absorption near edge structure (XANES) spectra show clear changes in the chemical state of Co, with the 2+ state predominant under CO exposure and the 3+ state predominant under O2_2-rich conditions. Extended X-ray absorption fine structure spectroscopy (EXAFS) analysis shows that the CoO bilayer characterized in ultrahigh vacuum is not formed under the conditions used in this study. Instead, the spectra acquired at low temperatures suggest formation of cobalt hydroxide and oxyhydroxide. At higher temperatures, the spectra indicate dewetting of the film and suggest formation of bulklike Co3_3O4_4 under oxidizing conditions. The experiments demonstrate the power of hard X-ray spectroscopy to probe the structures of well-defined oxide monolayers on metal single crystals under realistic catalytic conditions
    corecore