111 research outputs found

    Pseudomonas aeruginosa cross-colonization and persistence in patients with cystic fibrosis. Use of a DNA probe

    Get PDF
    To investigate cross-colonization with and persistence of Pseudomonas aeruginosa in cystic fibrosis (CF). 181 isolates from 76 CF patients were typed using a P. aeruginosa -specific DNA probe. Whereas sibling pairs predominantly harboured genotypically identical P. aeruginosa strains, all of the other patients harboured different strains. Seventy-nine per cent (22/31) of the infected CF patients harboured the same strains at the beginning and the end of a summer camp. A change of strains was seen in 10% (3/31) of the patients at the end of the camp. Forty-six per cent (6/13) of the patients who were apparently initially uninfected, acquired P. aeruginosa by the end of the period. Genotyping proved that strain change or acquisition was due to cross-colonization in four of nine cases. Very little P. aeruginosa was isolated from the inanimate environment. Persistence of P. aeruginosa after a temporary loss due to antibiotic therapy was seen in 12/16 paired patient strains before and after antibiotic therapy. Thus, suppression followed a flare-up seemed to occur in these patients rather than eradication and a new infection. When 35 patients were followed over a period of 6 months, 7 (20%) changed the strain in their sputum. Only one of 43 patients harboured two different P. aeruginosa strains simultaneously over a long perio

    NirA is an alternative nitrite reductase from Pseudomonas aeruginosa with potential as an antivirulence target

    Full text link
    The opportunistic pathogen Pseudomonas aeruginosa produces an arsenal of virulence factors causing a wide range of diseases in multiple hosts and is difficult to eradicate due to its intrinsic resistance to antibiotics. With the antibacterial pipeline drying up, antivirulence therapy has become an attractive alternative strategy to the traditional use of antibiotics to treat P. aeruginosa infections. To identify P. aeruginosa genes required for virulence in multiple hosts, a random library of Tn5 mutants in strain PAO1-L was previously screened in vitro for those showing pleiotropic effects in the production of virulence phenotypes. Using this strategy, we identified a Tn5 mutant with an insertion in PA4130 showing reduced levels of a number of virulence traits in vitro. Construction of an isogenic mutant in this gene presented results similar to those for the Tn5 mutant. Furthermore, the PA4130 isogenic mutant showed substantial attenuation in disease models of Drosophila melanogaster and Caenorhabditis elegans as well as reduced toxicity in human cell lines. Mice infected with this mutant demonstrated an 80% increased survival rate in acute and agar bead lung infection models. PA4130 codes for a protein with homology to nitrite and sulfite reductases. Overexpression of PA4130 in the presence of the siroheme synthase CysG enabled its purification as a soluble protein. Methyl viologen oxidation assays with purified PA4130 showed that this enzyme is a nitrite reductase operating in a ferredoxin-dependent manner. The preference for nitrite and production of ammonium revealed that PA4130 is an ammonia:ferredoxin nitrite reductase and hence was named NirA. IMPORTANCE The emergence of widespread antimicrobial resistance has led to the need for development of novel therapeutic interventions. Antivirulence strategies are an attractive alternative to classic antimicrobial therapy; however, they require identification of new specific targets which can be exploited in drug discovery programs. The host-specific nature of P. aeruginosa virulence adds complexity to the discovery of these types of targets. Using a sequence of in vitro assays and phylogenetically diverse in vivo disease models, we have identified a PA4130 mutant with reduced production in a number of virulence traits and severe attenuation across all infection models tested. Characterization of PA4130 revealed that it is a ferredoxin-nitrite reductase and hence was named NirA. These results, together with attenuation of nirA mutants in different clinical isolates, high level conservation of its gene product in P. aeruginosa genomes, and the lack of orthologues in human genomes, make NirA an attractive antivirulence target

    NirA Is an Alternative Nitrite Reductase from Pseudomonas aeruginosa with Potential as an Antivirulence Target

    Get PDF
    The opportunistic pathogen Pseudomonas aeruginosa produces an arsenal of virulence factors causing a wide range of diseases in multiple hosts and is difficult to eradicate due to its intrinsic resistance to antibiotics. With the antibacterial pipeline drying up, antivirulence therapy has become an attractive alternative strategy to the traditional use of antibiotics to treat P. aeruginosa infections. To identify P. aeruginosa genes required for virulence in multiple hosts, a random library of Tn5 mutants in strain PAO1-L was previously screened in vitro for those showing pleiotropic effects in the production of virulence phenotypes. Using this strategy, we identified a Tn5 mutant with an insertion in PA4130 showing reduced levels of a number of virulence traits in vitro. Construction of an isogenic mutant in this gene presented results similar to those for the Tn5 mutant. Furthermore, the PA4130 isogenic mutant showed substantial attenuation in disease models of Drosophila melanogaster and Caenorhabditis elegans as well as reduced toxicity in human cell lines. Mice infected with this mutant demonstrated an 80% increased survival rate in acute and agar bead lung infection models. PA4130 codes for a protein with homology to nitrite and sulfite reductases. Overexpression of PA4130 in the presence of the siroheme synthase CysG enabled its purification as a soluble protein. Methyl viologen oxidation assays with purified PA4130 showed that this enzyme is a nitrite reductase operating in a ferredoxin-dependent manner. The preference for nitrite and production of ammonium revealed that PA4130 is an ammonia:ferredoxin nitrite reductase and hence was named NirA

    Verzeichnis der Autorinnen und Autoren

    Get PDF
    Bezugspunkt ist der Begriff des "Küstenbildes", der hier aus unterschiedlichen fachlichen Perspektiven durch deren Vertreter dargestellt wird. Ziel des Bandes ist keine Synthese unterschiedlicher Positionen, vielmehr geht es darum, Divergenzen und vor allem Konvergenzen ausfindig zu machen, die die fachliche Diskussion in Gang bringen könnten. Der in diesem Band vorliegende Pluralismus der Perspektiven auf das "Küstenbild" in den einzelnen wissenschaftlichen Disziplinen und Praxisbereichen ist also durchaus gewollt und stellt interdisziplinäre Ansichten, Ansätze und Konzepte für den Zugriff auf das "Küstenbild" dar.The reference point for this publication is the concept of the "coastal image" which is represented from different professional perspectives by their representatives. The aim of the volume is not a synthesis of different positions, but rather to identify divergences and convergences that could trigger the technical discussion. The pluralism of perspectives on the "coastal image" in the individual scientific disciplines and practice areas presented in this volume is therefore deliberate and represents interdisciplinary views, approaches and concepts for accessing the "coastal image"

    Aerosolised levofloxacin in cystic fibrosis

    No full text
    • …
    corecore