243 research outputs found

    Introducing Complex Components into Architectural Synthesis

    Get PDF
    In this paper, we extend the set of library components which are usually considered in architectural synthesis by components with built-in chaining. For such components, the result of some internally computed arithmetic function is made available as an argument to some other function through a local connection. These components can be used to implement chaining in a data-path in a single component. Components with built-in chaining are combinatorial circuits. They correspond to ``complex gates in logic synthesis. If compared to implementations with several components, components with built-in chaining usually provide a denser layout, reduced power consumption, and a shorter delay time. Multiplier/accumulators are the most prominent example of such components. Such components require new approaches for library mapping in architectural synthesis. In this paper, we describe an IP-based approach taken in our OSCAR synthesis system

    Built-in Chaining: Introducing Complex Components into Architectural Synthesis

    Get PDF
    Abstract-In this paper, we extend the set of library components which are usually considered in architectural synthesis by components with built-in chaining. For such components, the result of some internally computed arithmetic function is made available as an argument to some other function through a local connection. These components can be used to implement chaining in a datapath in a single component. Components with built-in chaining are combinatorial circuits. They correspond to "complex gates" in logic synthesis. If compared to implementations with several components, components with built-in chaining usually provide a denser layout, reduced power consumption, and a shorter delay time. Multiplier/accumulators are the most prominent example of such components. Such components require new approaches for library mapping in architectural synthesis. In this paper, we describe an IP-based approach taken in our OSCAR synthesis system

    Palladium-templated subcomponent self-assembly of macrocycles, catenanes, and rotaxanes.

    Get PDF
    The reaction of 2,6-diformylpyridine with diverse amines and Pd(II) ions gave rise to a variety of metallosupramolecular species, in which the Pd(II) ion is observed to template a tridentate bis(imino)pyridine ligand. These species included a mononuclear complex as well as [2+2] and [3+3] macrocycles. The addition of pyridine-containing macrocyclic capping ligands allows for topological complexity to arise, thereby enabling the straightforward preparation of structures that include a [2]catenane, a [2]rotaxane, and a doubly threaded [3]rotaxane.This work was underwritten by the Marie Curie Academic-Industrial Initial Training Network on Dynamic Molecular Nanostructures (DYNAMOL) of the European Union’s Seventh Framework Programme (FP7) and the UK Engineering and Physical Sciences Research Council (EPSRC). We thank the Cambridge Chemistry NMR service for experimental assistance, Diamond Light Source (UK) for synchrotron beamtime on I19 (MT7984), and the EPSRC National Crystallography Service for X-ray data collection.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/anie.20140616

    Less-invasive subdural electrocorticography for investigation of spreading depolarizations in patients with subarachnoid hemorrhage

    Get PDF
    IntroductionWyler-strip electrodes for subdural electrocorticography (ECoG) are the gold standard for continuous bed-side monitoring of pathological cortical network events, such as spreading depolarizations (SD) and electrographic seizures. Recently, SD associated parameters were shown to be (1) a marker of early brain damage after aneurysmal subarachnoid hemorrhage (aSAH), (2) the strongest real-time predictor of delayed cerebral ischemia currently known, and (3) the second strongest predictor of patient outcome at 7 months. The strongest predictor of patient outcome at 7 months was focal brain damage segmented on neuroimaging 2 weeks after the initial hemorrhage, whereas the initial focal brain damage was inferior to the SD variables as a predictor for patient outcome. However, the implantation of Wyler-strip electrodes typically requires either a craniotomy or an enlarged burr hole. Neuromonitoring via an enlarged burr hole has been performed in only about 10% of the total patients monitored.MethodsIn the present pilot study, we investigated the feasibility of ECoG monitoring via a less invasive burrhole approach using a Spencer-type electrode array, which was implanted subdurally rather than in the depth of the parenchyma. Seven aSAH patients requiring extraventricular drainage (EVD) were included. For electrode placement, the burr hole over which the EVD was simultaneously placed, was used in all cases. After electrode implantation, continuous, direct current (DC)/alternating current (AC)-ECoG monitoring was performed at bedside in our Neurointensive Care unit. ECoGs were analyzed following the recommendations of the Co-Operative Studies on Brain Injury Depolarizations (COSBID).ResultsSubdural Spencer-type electrode arrays permitted high-quality ECoG recording. During a cumulative monitoring period of 1,194.5 hours and a median monitoring period of 201.3 (interquartile range: 126.1–209.4) hours per patient, 84 SDs were identified. Numbers of SDs, isoelectric SDs and clustered SDs per recording day, and peak total SD-induced depression duration of a recording day were not significantly different from the previously reported results of the prospective, observational, multicenter, cohort, diagnostic phase III trial, DISCHARGE-1. No adverse events related to electrode implantation were noted.DiscussionIn conclusion, our findings support the safety and feasibility of less-invasive subdural electrode implantation for reliable SD-monitoring

    Au I Cl-bound N-heterocyclic carbene ligands form MII4(LAuCl) 6 integrally gilded cages

    Get PDF
    The incorporation of an N-heterocyclic carbene (NHC) moiety into a self-assembled MII4L6 cage framework required the NHC first to be metallated with gold(I). Bimetallic cages could then be constructed using zinc(II) and cadmium(II) templates, showing weak luminescence. The cages were destroyed by the addition of further gold(I) in the form of AuI(2,4,6-trimethoxybenzonitrile)2SbF6, which caused the reversibly-formed cages to disassemble and controllably release the AuI-NHC subcomponent into solution. This release in turn induced the growth of gold nanoparticles. The rate of dianiline release could be tuned by capsule design or through the addition of chemical stimuli, with different release profiles giving rise to different nanoparticle morphologies

    Post-assembly modification of kinetically metastable Fe(II)2L3 triple helicates.

    Get PDF
    We report the covalent post-assembly modification of kinetically metastable amine-bearing Fe(II)2L3 triple helicates via acylation and azidation. Covalent modification of the metastable helicates prevented their reorganization to the thermodynamically favored Fe(II)4L4 tetrahedral cages, thus trapping the system at the non-equilibrium helicate structure. This functionalization strategy also conveniently provides access to a higher-order tris(porphyrinatoruthenium)-helicate complex that would be difficult to prepare by de novo ligand synthesis.This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC). D.A.R. acknowledges the Gates Cambridge Trust for Ph.D. (Gates Cambridge Scholarship) and conference funding.This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/ja5042397
    • …
    corecore