
Built-in Chaining:

Introducing Complex Components into Architectural Synthesis

Peter Marwedel, Birger Landwehr Rainer Dömer

Dept. of Computer Science XII Dept. of Information and Computer Science
University of Dortmund University of California, Irvine

D-44221 Dortmund, Germany Irvine, CA 92697-3425, USA
e-mail: fmarwedel, landwehrg@ e-mail: doemer@ics.uci.edu
ls12.informatik.uni-dortmund.de

Abstract– In this paper, we extend the set of library components
which are usually considered in architectural synthesis by com-
ponents with built-in chaining. For such components, the result
of some internally computed arithmetic function is made available
as an argument to some other function through a local connection.
These components can be used to implement chaining in a data-
path in a single component. Components with built-in chaining
are combinatorial circuits. They correspond to “complex gates”
in logic synthesis. If compared to implementations with several
components, components with built-in chaining usually provide a
denser layout, reduced power consumption, and a shorter delay
time. Multiplier/accumulators are the most prominent example
of such components. Such components require new approaches
for library mapping in architectural synthesis. In this paper, we
describe an IP-based approach taken in our OSCAR synthesis
system.

I. MOTIVATION

Architectural synthesis (also known as high-level synthesis
(HLS)) can be defined as the task of implementing a given
behavioural specification by means of an appropriate register-
transfer (RT-) level architecture. Architectural synthesis is con-
sidered to provide the next productivity boost for designers of
information-processing devices.

RT-level components, which have been considered so far,
include registers, register-files, busses, multiplexers and multi-
functional units (ALUs). All functional units were considered
to compute essentially a single (possibly control-selectable)
standard function, such as addition, subtraction, or multiplic-
ation. On the other hand, current component libraries contain
a growing number of components with built-in chaining (BIC)
or internal chaining. With built-in chaining, the result of some
computed standard function is made available as an argument
to another function. For example, multiplier/adders multiply
two numbers and add the result to a third one (see fig. 1). With
BIC components, chaining in HLS can be implemented by a

�This work has been supported by the Commission of the European Com-
munities under contract ESPRIT 6855 (LINK). In addition, the first author was
partially supported through NATO grant # CRG 950910.

single component. In contrast, standard chaining requires ex-
ternal wiring between two or more components (therefore, we
call it external chaining).

*

+

in1 in2

in3

Figure 1: Multiplier/adder

In addition to multiplier/adders, multi-
plier/adder/accumulators (MACs), ALUs followedby (internal)
shifters, and adders followed by (internal) comparators are
components with internal chaining.

The main advantages of such components include:

� The ability to generate efficient layout. The layout of BIC
components is usually more efficient than the combined
layout of several independently designed functional units.
For example, abutment of corresponding lines may be pos-
sible.

� Delay and power consumption may be smaller than for
separate components. The delay of BIC components may
be small due to a) the more compact layout, b) exploitation
of context-dependent information during logic synthesis,
and c) adjustment of the strength of drivers.

� Design-reuse of complex components is facilitated. Ex-
ploiting the presence of BIC components is important for
re-using available valuable designs.

Example:

Table 1 shows area, delay times and power consumption of adders,
multipliers, and multiplier-adders, respectively. The same information

Cell Area Power (@ 8 MHz) Propagation
[(k�)2] [mW] delay [ns]

adder (64 Bit) 5.410 unknown 18.44
multiplier (32 Bit) 14.717 20.286 107.76
multiplier-adder-cell (32/64 bit) 15.312 20.832 108.65
(built-in, internal chaining)
multiplier-cells + adder-cells 36.585 unknown 117.66
(external chaining) (32/64 bit)

Table 1: Area, power, and propagation delay for commercial library components

Figure 2: Layout for multiplier/adder with external vs. internal chaining

is also included for a multiplier-adder chain, built from individual
multiplier and adder components (external chaining). In order to
allow a fair comparison of the values, 64-bit adders have been used
in all cases. The information has been generated with the help of the
COMPASS DataPath Synthesizer for a 1� CMOS technology.

Fig. 2 shows the layout of the design with external chaining.

Most importantly, the area for external chaining (computed
as the bounding box of the combined layout), is more than two
times larger than the BIC solution. This is caused by a very poor
abutment of the two components. Some of the wiring area of
the bounding box can possibly be saved, but external chaining
will never be as efficient as internal chaining.

The propagation delay has been computed with the COM-
PASS QTV timing analyser. Indicated values represent the
maximum of the values for rising and falling edges. It is obvi-
ous, that the delay of the implementation with external chaining
is less than the sum of the delays of the individual components
(this is the reason for using non-additive delays models, see
e.g. Rabaey et al.). Nevertheless, the delay is even smaller if
internal chaining is used.

BIC is important for many designs. Many digital signal
processing architectures meet their constraints only because
BIC is available. For example, many filter algorithms require
MACs in order to meet their throughput constraints. Hence,
the support of BIC in HLS is a must, despite the fact that the
number of BIC components in libraries may not be very large.

The behavioural specification of digital signal processing ar-
chitectures can be represented by data-flow graphs (DFGs).
Fig. 3 shows the DFG of the well-known elliptical wave filter
and indicates where multiplier/adders can be used. It is obvi-
ous that quite a number of operations can be implemented by
multiplier/adders.

II. PREVIOUS WORK

In HLS synthesis, there has been only a very limited amount
of work which took BIC components into account.

Work on the Cathedral silicon compilers (see e.g. [7]) is one
of the few contributions to the area. The execution unit (EXU)
model of Cathedral includes BIC. However, only an essentially
fixed number of EXU types has been considered and no results
are known which contribute to the topic of the paper.

Research at the University of Eindhoven is directed at cre-
ating regular layouts from netlists in which regularity is not
immediately obvious [8]. As a special case, these algorithms
would be able to create a regular layout if, for example, an adder
follows a multiplier in the netlist. However, the approach does
not include exploitation of BIC components in HLS.

In logic synthesis, the situation is different. So-called com-
plex gates have been used in library mapping for many years
(see [5] as an example).

+

+

+

*

+

+

+

*

+

+

*

+

+

+

+

+

+

+

+

*

+

+

*

+

+

+

*

+

+

*

+

+

*

+1

2

3

4

5

6

7

8

9

10

11

12

13

14

2

2

2

2

2

2

2

2

a b

+

c*

f

X

+

out

in1 in2 in3

Figure 3: Use for multiplier/adders for elliptical wave filter

III. THE PROBLEM

In order to support BIC components in HLS, several issues
have to be considered. Let’s start with an example to make
these issues clear. Fig. 4 shows a section of a dataflow-graph
(DFG).

*

+

j

jj
3

1

2

Figure 4: DFG with associated operation labels

Assume that a library containing adders, multipliers and mul-
tiplier/adders is given. There are several options for implement-
ing this section of the DFG:

1. Implement + and � with two separate components in dif-
ferent control steps.

2. Implement + and � with two separate components in a
single control step using standard chaining.

3. Implement + and � with a multiplier/adder in a single
control step.

4. Implement + and � with a multiplier/adder performing a
multi-cycle operation.

Clearly, decisions have to take many factors into account:
delay, cost (power and area), intended clocking frequency, pre-
dicted wiring delays, and surrounding operations. Also, one
might want to consider testability and error-recovery aspects of
the different design options [3].

In this context, it has to be mentioned, that well-established
standard techniques in HLS have to be revisited:

1. Scheduling and resource assignment can be modelled by
functions taking DFG nodes (operations) as arguments
and returning the corresponding control step and resource.
In the context of BIC components, it is sometimes more
adequate to use sets of nodes or operations as arguments.

2. The function performed by a component can no longer be
described by a single operation identifier or an expression
involving such a single identifier. Rather, expressions
including several operation identifiers are required.

IV. APPROACH TAKEN IN OSCAR

A. Naming conventions

For our HLS system OSCAR (Optimum simultaneous
scheduling, allocation and resource assignment), the ability to
consider BIC components has been a major design goal. A
very essential part of this is to select components for the final
architecture. We use binary decision variables for modelling
the selection of certain components:

bk =

�
1; if instance k is selected
0; otherwise (1)

Each k 2 K denotes a potential instance of a library element
type m 2 M . Before synthesis is started, a sufficient set of
instance identifiers is made available for each m 2 M . Fig. 5
is a graphical representation of naming in our model.

We distinguish between behavioural and structural domains.
For each of these, we distinguish between types and instances.
Specific types and instances are denoted by elements taken
from sets of discrete elements. In actual implementations, sets
of integers are used. In the paper, we are sometimes using
sets of characters in order to improve readability. As can be
seen from fig. 5, the sets for operation instances, operation
types, component instances and component types are denoted
by J;G;K; and M , respectively.

Component functionality is modelled by relation executable
on.

Def.: 8j 2 J; k 2 K : j executable on k () k 2 K is
able to perform operation j 2 J .

We assume that all components are only able to start a limited
number of operations. More precisely, we assume that com-
ponent k is able to start a new operation after `(j; k) control
steps if j is the operation most recently started. `(j; k) is called
the component data initiation intervall (dii).

LetG0 denote the set of standard operations which are suppor-
ted for an HLS system. In the case of OSCAR,G0 corresponds
to operations described in standard synthesis packages such as
[9]. These operations can be represented by expressions con-
taining single operation identifiers, for example "+" and "�".
These operations are called simple operations.

In addition to these operations, OSCAR considers complex
operations or macro operations, operations which can be per-
formed by BIC components. If, for example, the library con-
tains a MAC, then ((in1 � in2) + in3) will be con-
sidered as a complex operation. Let G00 denote complex oper-
ation types.

Def.: G = G0[G00. G denotes the set of all operation types.

Operation instances corresponding to G;G0 and G00 are de-
noted by sets J; J 0 and J 00, respectively.

In OSCAR, complex operations in the DFG are labelled just
like simple operations (see fig. 4). Note that a certain node in
the DFG may belong to several labels, to one for the node as a
simple operation and possibly also to others if it is an element
of complex operations.

The essential task of HLS is to establish bindings between
operation and component instances. Moreover, most HLS al-
gorithms also generate bindings to control steps at which these
operations are started. In OSCAR, control steps are represented
by integers i from an index set I. Bindings are represented by
decision variables x. In the case of predefined instance bindings
or cost functions containing interconnect costs, OSCAR uses
triple-indexed decision variables with the following definition:

xi;j;k =

8><
>:

1; if operation j is started
on component instance k
at control step i

0; otherwise

(2)

For each operation j 2 J , R(j) denotes the set of control
steps during which j could be executed. R(j) can be computed
by a simple ASAP/ALAP analysis or by techniques taking re-
source constraints into account.

B. The model

For a given component library, the cost function is a linear
function of these variables.

X
m2M

(COSTS(m) �
X
k2K

type(k)=m

bk) (3)

This cost function is minimized under constraints describing
correct solutions. The following constraints are not affected by
the need of modelling BIC (see [6] for detailed equations):

1. Timing constraints:

these constraints can be used to specify minimum and max-
imum delay between operations. Applied on read/write-
operations it allows to meet given timing specifications.

2. Precedence constraints:

These constraints reflect that operations cannot be started
before their arguments have been computed.

3. Chaining constraints

These constraints reflect the fact that the total combinat-
orial delay of the design should not exceed a given thresh-
hold. In OSCAR, we assume that such a threshhold is
known during the design process. An outer loop can be
used to find a good threshhold [4]. Using this threshhold,
OSCAR generates constraints in case the combined delay
of data-dependent operations exceeds the threshhold.

structure

behaviourlayout
J

K M

instance type

type

optype
operation

componentex
ec

ut
ab

le
 o

n

ex
ec

ut
ab

le
 o

n

J’ U J’’
= =

G

G’ U G’’

Figure 5: Naming conventions in the OSCAR model

Example:
Assume that the combined delay of j1 and j2 in fig. 4 exceeds the
threshhold. Then, the following constraints can be generated:

8i 2 R(j1) \R(j2) :
X
k

(xi;j1 ;k + xi;j2;k) � 1 (4)

2

Chaining constraints are required in order to avoid solution
2 of section 3 in case high clocking frequencies have been
specified. These constraints are not part of any other IP-
model we are aware of.

Other constraints are affected by the need to model BIC:

4. Resource assignment constraints

Resource assigment constraints guarantee that generated
solutions respect the minimum data initiation intervall
dii. dii’s are modelled by the following constraints:

8k 2 K :
X
j2J

j executable on k

i+`(j;k)�1X
i0=i

i2R(j)

xi0;j;k � bk (5)

Example:
Consider fig. 6. For the sakeof better readability, we usea;m;M

to denote an adder, a multiplier and a MAC, respectively. Fur-
thermore, we use +; �;
 to denote addition, multiplication and
MAC operations.

If the macro operation is assigned to a MAC and to control
step i = 2, then no other operation can be performed on this
component for control steps in the range [i; i + `(j;k) � 1] =

[2; 1 + `(j; k)]. This is the situation described in fig. 6.

2

Since (5) does not distinguish between simple and complex
operations, our model is able to handle components which
can execute a mix of simple and complex operations.

The form of equation (5) is very similar to resource con-
straints for other IP-based models. However, in our model,

the set J includes complex operations. Also, two opera-
tions j1; j2 2 J may, in fact, represent overlapping seg-
ments of the DFG.

In previous approaches [2], constant 1 is used on the right
hand side of resource constraints. The current approach
is required for HLS with integrated scheduling and as-
signment in order to avoid solutions, in which operations
are assigned to non-selected component instances, i.e. in-
stances for which bk is 0.

5. Operation assignment constraints

These constraints reflect the fact that each operation has
to be performed by a suitable hardware resource. This is
guaranteed by the following constraints:

8j0 2 J 0 :
X

i2R(j0)

X
k2K

j exec on k

xi;j0;k +

X
j002J00:

j02j00

X
i2R(j00)

X
k2K

j00 exec on k

xi;j00;k = 1 (6)

The meaning of these constraints is as follows:

Each simple operation j0 has to be implemented. There
are two ways of doing this:

a) j0 is implemented individualy. In this case, the sum
of xi;j0;k over all possible control stepsR(j0) and all
components will be 1 (1st term in (6) = 1).

b) j0 is implemented as part of a macro operation j00. j0

may actually be part of several macro operations, but
only one of these can be implemented as a macro op-
eration. Hence, the sum of xi;j00;k over all macro op-
erations j00 enclosing j0, over all control stepsR(j00),
and over all resources k capable of executing j00 must
be one (second term in (6)).

Example:

Let us assume that R(+) = 3;R(�) = 2;R(
) = [2::3]. Then,
the following equations will be generated:

blocked for
 (j,k)= ()
control
steps

*

+

x =1

1

2

3

4

5

6

Ox
Ox

2 M

Ox M

k=M (MAC) k=a k=m

control steps

instancescomponent

,

Figure 6: Graphical interpretation of assignment constraints

j
0 = � : x2�m + x2
M + x3
M = 1 (7)

j
0 = + : x3+a + x2
M + x3
M = 1 (8)

These equations guarantee that either the macro operation
 or
the simple operations will be bound to a hardware component.

2

By considering simple operations as a special case of
macro operations, it would be possible to use just the right
term of equation 6, but this would lead to some redundant
computations.

V. RESULTS

In the following, we will describe our results for two stand-
ard examples: the elliptical wave filter (EWF) and an edge-
detection algorithm. All results use the components described
in table 1. The cycle time has been set to 50 ns in order to allow a
controller and multiplexer delay of about 34 ns for single-cycle
adds. For this cycle time, multiplications and multiply/adds
will always be multi-cycle operations.

None of the results uses external chaining. Hence, the fol-
lowing tables mainly demonstrate the effect of built-inchaining.
The execution times have been measured on a SPARC 20 using
the mixed IP-solver lp solve [1].

Tables 2 and 3 show the results for the elliptical wave filter.

Note that the use of BIC can be exploited in two ways: a) to
get a smaller design if the cycle budget is fixed and b) to get a
faster design if the area budget is fixed.

Tables 4 and 5 show the results for the edge detector al-
gorithm.

add mult active runtime
cs area [s]

[(k�)2]
20 3 4 66.083 � 1
21 2 3 48.961 � 1
22 2 2 34.244 3

Table 2: Results for EWF without BIC components

add mult mac active runtime
cs area [s]

[(k�)2]
17 3 1 3 67.872 � 1
18 2 1 2 50.154 37
19 2 0 2 35.434 216

Table 3: Results for EWF with BIC components

add sub mult active runtime
cs area [s]

[(k�)2]
12 2 2 8 127.418 � 1
13 2 2 7 112.700 � 1
14 2 2 4 68.548 57

Table 4: Results for edge detector without BIC components

VI. CONCLUSION

In this paper, we have proposed to pay attention to the need of
modelling components with built-in chaining (BIC). We have
stressed the importance of the support of these components in
high-level synthesis. As an example, we have shown how BIC
can be modelled in integer-programming (IP) based synthesis

add sub mult mac active runtime
cs area [s]

[(k�)2]
12 2 2 4 1 83.860 2
13 1 2 3 1 66.737 10
14 1 1 3 1 64.304 192

Table 5: Results for edge detector with BIC components

algorithms. IP-models provide a basis for adding support for
BIC in a rather straightforward way. Due to recent advances in
IP-based modelling, we have been able to generate designs in
acceptable computation time [6].

These results demonstrate the efficiency of designs using
BIC.

The authors appreciate the comments of Fadi Kurdahi and
Nikil Dutt (UC Irvine) on an earlier version of the manuscript.

REFERENCES

[1] M.R.C.M. Berkelaar. Unixtm manual page of lp solve.
Eindhoven University of Technology, Design Automation
Section, 1992.

[2] C. H. Gebotys and M. I. Elmasry. Optimal VLSI Architec-
tural Synthesis. Kluwer Academic Publishers, 1992.

[3] I. G. Harris and A. Orailoglu. Microarchitectural syn-
thesis of VLSI designs with high test concurrency. 31st
ACM/IEEE Design Automation Conference, pages 206–
211, 1994.

[4] P. K. Jha, S. Parameswaran, and N. D. Dutt. Reclocking
controllers for minimum execution time. Technical Report
94-40, Information and Computer Science, University of
California at Irvine, 1994.

[5] K. Keutzer. DAGON: Technology binding and local op-
timization by DAG matching. 24th Design Automation
Conference, pages 341–347, 1987.

[6] B. Landwehr, P. Marwedel, and R. Dömer. OSCAR: Op-
timum simultaneous scheduling, allocation and resource
binding based on integer programming. Euro-DAC, 1994.

[7] H. De Man, J. Rabaey, and P. Six. CATHEDRAL II:
A synthesis and module generation system for multipro-
cessor systems on a chip. in: G.DeMicheli, A.Sangiovanni-
Vincentelli, P.Antognetti: Design Systems for VLSI
Circuits–Logic Synthesis and Silicon Compilation–, Mar-
tinus Nijhoff Publishers, 1987.

[8] R. Nijssen and J.A.G. Jess. Data path regularity extraction.
IFIP Workshop on Logic and Architecture Synthesis, 1994.

[9] Special Interest Group on Synthesis from VHDL. VHDL
arithmetic package for synthesis. repository at IN-
TERNET host “vhdl.org”, login “anonymous”, file
“vi/vhdlsynth/numeric bit.vhd”, 1993.

