104 research outputs found

    Axion-like-particle search with high-intensity lasers

    Full text link
    We study ALP-photon-conversion within strong inhomogeneous electromagnetic fields as provided by contemporary high-intensity laser systems. We observe that probe photons traversing the focal spot of a superposition of Gaussian beams of a single high-intensity laser at fundamental and frequency-doubled mode can experience a frequency shift due to their intermittent propagation as axion-like-particles. This process is strongly peaked for resonant masses on the order of the involved laser frequencies. Purely laser-based experiments in optical setups are sensitive to ALPs in the eV\mathrm{eV} mass range and can thus complement ALP searches at dipole magnets.Comment: 25 pages, 2 figure

    Workshop summary -- Kaons@CERN 2023

    Full text link
    Kaon physics is at a turning point -- while the rare-kaon experiments NA62 and KOTO are in full swing, the end of their lifetime is approaching and the future experimental landscape needs to be defined. With HIKE, KOTO-II and LHCb-Phase-II on the table and under scrutiny, it is a very good moment in time to take stock and contemplate about the opportunities these experiments and theoretical developments provide for particle physics in the coming decade and beyond. This paper provides a compact summary of talks and discussions from the Kaons@CERN 2023 workshop.Comment: 54 pages, Summary of Kaons@CERN 23 workshop, references and clarifications adde

    Workshop summary:Kaons@CERN 2023

    Get PDF
    Kaon physics is at a turning point – while the rare-kaon experiments NA62 and KOTO are in full swing, the end of their lifetime is approaching and the future experimental landscape needs to be defined. With HIKE, KOTO-II and LHCb-Phase-II on the table and under scrutiny, it is a very good moment in time to take stock and contemplate about the opportunities these experiments and theoretical developments provide for particle physics in the coming decade and beyond. This paper provides a compact summary of talks and discussions from the Kaons@CERN 2023 workshop, held in September 2023 at CERN

    Conceptual design of the International Axion Observatory (IAXO)

    Get PDF
    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few ×1012\times 10^{-12} GeV1^{-1} and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling gaeg_{ae} with sensitivity -for the first time- to values of gaeg_{ae} not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, which follows the layout of an enhanced axion helioscope, based on a purpose-built 20m-long 8-coils toroidal superconducting magnet. All the eight 60cm-diameter magnet bores are equipped with focusing x-ray optics, able to focus the signal photons into 0.2\sim 0.2 cm2^2 spots that are imaged by ultra-low-background Micromegas x-ray detectors. The magnet is built into a structure with elevation and azimuth drives that will allow for solar tracking for \sim12 h each day.Comment: 47 pages, submitted to JINS

    First results of the CAST-RADES haloscope search for axions at 34.67 µeV

    Get PDF
    We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 µeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of ga¿ ¿ 4 × 10-13 GeV-1 over a mass range of 34.6738 µeV < ma< 34.6771 µeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 µeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities. © 2021, The Author(s)

    Physics potential of the International Axion Observatory (IAXO)

    Get PDF
    We review the physics potential of a next generation search for solar axions:the International Axion Observatory (IAXO). Endowed with a sensitivity todiscover axion-like particles (ALPs) with a coupling to photons as small asgaγ1012g_{a\gamma}\sim 10^{-12} GeV1^{-1}, or to electrons gaeg_{ae}\sim1013^{-13},IAXO has the potential to find the QCD axion in the 1 meV\sim1 eV mass rangewhere it solves the strong CP problem, can account for the cold dark matter ofthe Universe and be responsible for the anomalous cooling observed in a numberof stellar systems. At the same time, IAXO will have enough sensitivity todetect lower mass axions invoked to explain: 1) the origin of the anomalous"transparency" of the Universe to gamma-rays, 2) the observed soft X-ray excessfrom galaxy clusters or 3) some inflationary models. In addition, we reviewstring theory axions with parameters accessible by IAXO and discuss theirpotential role in cosmology as Dark Matter and Dark Radiation as well as theirconnections to the above mentioned conundrums
    corecore