34 research outputs found

    Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm

    Get PDF
    Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms.Fondo de Investigacion Sanitaria del Instituto de Salud Carlos III (PI16/188, PI19/855), the European Regional D evelopment Fund, and the European Commission through H2020-EU.1.1, European Research Council grant ERC-2016-StG 715322-EndoMitTalk, and Gobierno de Espana SAF2016-80305P. This work was partially supported by Comunidad de Madrid (S2017/BMD 3867 RENIM-CM) and cofinanced by the European Structural and Investment Fund. M.M. is supported by the Miguel Servet Program (CP 19/014, Fundacion de Investigacion del Hospital 12 de Octubr

    RESCUhE Project: Cultural Heritage vulnerability in a changing and directional climate

    Get PDF
    [EN] RESCUhE Project (Improving structural RESilience of Cultural HEritage to directional extreme hydro-meteorological events in the context of the Climate Change) is a coordinated IGME-UAM research project funded by Spanish Government (MCIN/AEI/10.13039/501100011033). The framework of this research is the predicted increase in climate change vulnerability of heritage sites and the current disconnection between both environmental research on material decay and the practical aspects of designing preventive conservation measurements.RESCUhE Project (Improving structural RESilience of Cultural HEritage to directional extreme hydro-meteorological events in the context of the Climate Change) is a coordinated IGME-UAM research project funded by Spanish Government (MCIN/AEI/10.13039/501100011033).Peer reviewe

    Role of drug transporters in the sensitivity of acute myeloid leukemia to sorafenib

    No full text
    Background: Chemoresistance often limits the success of the pharmacological treatment in acute myeloid leukemia (AML) patients. Although positive results have been obtained with tyrosine kinase inhibitors (TKIs), such as sorafenib, especially in patients with Fms-like tyrosine kinase 3 (FLT3)-positive AML, the success of chemotherapy is very heterogeneous. Here we have investigated in vitro whether the transportome (set of expressed plasma membrane transporters) is involved in the differential response of AML to sorafenib. Methods: The sensitivity to sorafenib-induced cell death (MTT test and anexin V/7-AAD method) was evaluated in five different cell lines: MOLM-13, OCI-AML2, HL-60, HEL and K-562. The transportome was characterized by measuring mRNA using RT-qPCR. Drug uptake/efflux was determined by flow cytometry using specific substrates and inhibitors. Results: The cytostatic response to sorafenib was: MOLM-13>>OCI-AML2>HL60>HEL≈K-562. Regarding efflux pumps, MDR1 was highly expressed in HEL>K562≈MOLM-13, but not in OCI-AML2 and HL-60. BCRP and MPR3 expression was low in all cell lines, whereas MRP4 and MRP5 expression was from moderate to high. Flow cytometry studies demonstrated that MRP4, but not MRP5, was functional. The expression of the organic cation transporter 1 (OCT1), involved in sorafenib uptake, was MOLM-13>OCI-AML2≈HL-60 and non detectable in HEL and K-562. Transfection of HEL cells with OCT1 increased the sensitivity of these cells to sorafenib, whereas inactive genetic variants failed to induce this change. Conclusion: Together with changes in the expression/function of receptors targeted by TKIs, the expression of plasma membrane transporters involved in sorafenib uptake/efflux may affect the response of leukemia cells to this drug

    Role of Intracellular Drug Disposition in the Response of Acute Myeloid Leukemia to Cytarabine and Idarubicin Induction Chemotherapy

    No full text
    Despite its often low efficacy and high toxicity, the standard treatment for acute myeloid leukemia (AML) is induction chemotherapy with cytarabine and idarubicin. Here, we have investigated the role of transporters and drug-metabolizing enzymes in this poor outcome. The expression levels (RT-qPCR) of potentially responsible genes in blasts collected at diagnosis were related to the subsequent response to two-cycle induction chemotherapy. The high expression of uptake carriers (ENT2), export ATP-binding cassette (ABC) pumps (MDR1), and enzymes (DCK, 5-NT, and CDA) in the blasts was associated with a lower response. Moreover, the sensitivity to cytarabine in AML cell lines was associated with ENT2 expression, whereas the expression of ABC pumps and enzymes was reduced. No ability of any AML cell line to export idarubicin through the ABC pumps, MDR1 and MRP, was found. The exposure of AML cells to cytarabine or idarubicin upregulated the detoxifying enzymes (5-NT and DCK). In AML patients, 5-NT and DCK expression was associated with the lack of response to induction chemotherapy (high sensitivity and specificity). In conclusion, in the blasts of AML patients, the reduction of the intracellular concentration of the active metabolite of cytarabine, mainly due to the increased expression of inactivating enzymes, can determine the response to induction chemotherapy

    Chromothripsis Is a Recurrent Genomic Abnormality in High-Risk Myelodysplastic Syndromes.

    No full text
    To explore novel genetic abnormalities occurring in myelodysplastic syndromes (MDS) through an integrative study combining array-based comparative genomic hybridization (aCGH) and next-generation sequencing (NGS) in a series of MDS and MDS/myeloproliferative neoplasms (MPN) patients. 301 patients diagnosed with MDS (n = 240) or MDS/MPN (n = 61) were studied at the time of diagnosis. A genome-wide analysis of DNA copy number abnormalities was performed. In addition, a mutational analysis of DNMT3A, TET2, RUNX1, TP53 and BCOR genes was performed by NGS in selected cases. 285 abnormalities were identified in 71 patients (23.6%). Three high-risk MDS cases (1.2%) displayed chromothripsis involving exclusively chromosome 13 and affecting some cancer genes: FLT3, BRCA2 and RB1. All three cases carried TP53 mutations as revealed by NGS. Moreover, in the whole series, the integrative analysis of aCGH and NGS enabled the identification of cryptic recurrent deletions in 2p23.3 (DNMT3A; n = 2.8%), 4q24 (TET2; n = 10%) 17p13 (TP53; n = 8.5%), 21q22 (RUNX1; n = 7%), and Xp11.4 (BCOR; n = 2.8%), while mutations in the non-deleted allele where found only in DNMT3A (n = 1), TET2 (n = 3), and TP53 (n = 4). These cryptic abnormalities were detected mainly in patients with normal (45%) or non-informative (15%) karyotype by conventional cytogenetics, except for those with TP53 deletion and mutation (15%), which had a complex karyotype. In addition to well-known copy number defects, the presence of chromothripsis involving chromosome 13 was a novel recurrent change in high-risk MDS patients. Array CGH analysis revealed the presence of cryptic abnormalities in genomic regions where MDS-related genes, such as TET2, DNMT3A, RUNX1 and BCOR, are located

    DataSheet_2_Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation.pdf

    No full text
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for patients with hematologic malignances. Haploidentical HSCT (Haplo-HSCT) is an alternative option for patients who do not have an HLA-matched donor. The use of post-transplantation high dose cyclophosphamide (PT-Cy) is commonly employed for graft-versus-host disease (GVHD) prophylaxis in haplo-HSCT. Cyclophosphamide (Cy) is an alkylating agent with antineoplastic and immunosuppressive activity, whose bioactivation requires the activity of polymorphic enzymes in the liver to produce phosphoramide mustard, which is a DNA alkylating agent. To identify polymorphisms in the genes of Cy metabolism and correlate them with post-HSCT complications [GVHD, sinusoidal obstruction syndrome (SOS), hemorrhagic cystitis (HC) and transplant-related mortality (TRM)], we designed a custom next-generation sequencing panel with Cy metabolism enzymes. We analyzed 182 patients treated with haplo-HSCT with PT-Cy from 2007 to 2019, detecting 40 variants in 11 Cy metabolism genes. Polymorphisms in CYP2B6, a major enzyme involved in Cy activation, were associated with decreased activity of this enzyme and a higher risk of Graf-versus-host disease (GVHD). Variants in other activation enzymes (CYP2A6, CYP2C8, CYP2C9, CYP2C19) lead to decreased enzyme activity and were associated with GVHD. Polymorphisms in detoxification genes such as glutathione S-transferases decreased the ability to detoxify cyclophosphamide metabolites due to lower enzyme activity, which leads to increased amounts of toxic metabolites and the development of III-IV acute GVHD. GSMT1*0 a single nucleotide polymorphism previously recognized as a risk factor for SOS was associated with a higher risk of SOS. We conclude that polymorphisms of genes involved in the metabolism of cyclophosphamide in our series are associated with severe grades of GVHD and toxicities (SOS and TRM) after haplo-HSCT and could be used to improve the clinical management of transplanted patients.</p

    DataSheet_4_Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation.pdf

    No full text
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for patients with hematologic malignances. Haploidentical HSCT (Haplo-HSCT) is an alternative option for patients who do not have an HLA-matched donor. The use of post-transplantation high dose cyclophosphamide (PT-Cy) is commonly employed for graft-versus-host disease (GVHD) prophylaxis in haplo-HSCT. Cyclophosphamide (Cy) is an alkylating agent with antineoplastic and immunosuppressive activity, whose bioactivation requires the activity of polymorphic enzymes in the liver to produce phosphoramide mustard, which is a DNA alkylating agent. To identify polymorphisms in the genes of Cy metabolism and correlate them with post-HSCT complications [GVHD, sinusoidal obstruction syndrome (SOS), hemorrhagic cystitis (HC) and transplant-related mortality (TRM)], we designed a custom next-generation sequencing panel with Cy metabolism enzymes. We analyzed 182 patients treated with haplo-HSCT with PT-Cy from 2007 to 2019, detecting 40 variants in 11 Cy metabolism genes. Polymorphisms in CYP2B6, a major enzyme involved in Cy activation, were associated with decreased activity of this enzyme and a higher risk of Graf-versus-host disease (GVHD). Variants in other activation enzymes (CYP2A6, CYP2C8, CYP2C9, CYP2C19) lead to decreased enzyme activity and were associated with GVHD. Polymorphisms in detoxification genes such as glutathione S-transferases decreased the ability to detoxify cyclophosphamide metabolites due to lower enzyme activity, which leads to increased amounts of toxic metabolites and the development of III-IV acute GVHD. GSMT1*0 a single nucleotide polymorphism previously recognized as a risk factor for SOS was associated with a higher risk of SOS. We conclude that polymorphisms of genes involved in the metabolism of cyclophosphamide in our series are associated with severe grades of GVHD and toxicities (SOS and TRM) after haplo-HSCT and could be used to improve the clinical management of transplanted patients.</p

    DataSheet_1_Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation.pdf

    No full text
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for patients with hematologic malignances. Haploidentical HSCT (Haplo-HSCT) is an alternative option for patients who do not have an HLA-matched donor. The use of post-transplantation high dose cyclophosphamide (PT-Cy) is commonly employed for graft-versus-host disease (GVHD) prophylaxis in haplo-HSCT. Cyclophosphamide (Cy) is an alkylating agent with antineoplastic and immunosuppressive activity, whose bioactivation requires the activity of polymorphic enzymes in the liver to produce phosphoramide mustard, which is a DNA alkylating agent. To identify polymorphisms in the genes of Cy metabolism and correlate them with post-HSCT complications [GVHD, sinusoidal obstruction syndrome (SOS), hemorrhagic cystitis (HC) and transplant-related mortality (TRM)], we designed a custom next-generation sequencing panel with Cy metabolism enzymes. We analyzed 182 patients treated with haplo-HSCT with PT-Cy from 2007 to 2019, detecting 40 variants in 11 Cy metabolism genes. Polymorphisms in CYP2B6, a major enzyme involved in Cy activation, were associated with decreased activity of this enzyme and a higher risk of Graf-versus-host disease (GVHD). Variants in other activation enzymes (CYP2A6, CYP2C8, CYP2C9, CYP2C19) lead to decreased enzyme activity and were associated with GVHD. Polymorphisms in detoxification genes such as glutathione S-transferases decreased the ability to detoxify cyclophosphamide metabolites due to lower enzyme activity, which leads to increased amounts of toxic metabolites and the development of III-IV acute GVHD. GSMT1*0 a single nucleotide polymorphism previously recognized as a risk factor for SOS was associated with a higher risk of SOS. We conclude that polymorphisms of genes involved in the metabolism of cyclophosphamide in our series are associated with severe grades of GVHD and toxicities (SOS and TRM) after haplo-HSCT and could be used to improve the clinical management of transplanted patients.</p

    Table_1_Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation.xlsx

    No full text
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for patients with hematologic malignances. Haploidentical HSCT (Haplo-HSCT) is an alternative option for patients who do not have an HLA-matched donor. The use of post-transplantation high dose cyclophosphamide (PT-Cy) is commonly employed for graft-versus-host disease (GVHD) prophylaxis in haplo-HSCT. Cyclophosphamide (Cy) is an alkylating agent with antineoplastic and immunosuppressive activity, whose bioactivation requires the activity of polymorphic enzymes in the liver to produce phosphoramide mustard, which is a DNA alkylating agent. To identify polymorphisms in the genes of Cy metabolism and correlate them with post-HSCT complications [GVHD, sinusoidal obstruction syndrome (SOS), hemorrhagic cystitis (HC) and transplant-related mortality (TRM)], we designed a custom next-generation sequencing panel with Cy metabolism enzymes. We analyzed 182 patients treated with haplo-HSCT with PT-Cy from 2007 to 2019, detecting 40 variants in 11 Cy metabolism genes. Polymorphisms in CYP2B6, a major enzyme involved in Cy activation, were associated with decreased activity of this enzyme and a higher risk of Graf-versus-host disease (GVHD). Variants in other activation enzymes (CYP2A6, CYP2C8, CYP2C9, CYP2C19) lead to decreased enzyme activity and were associated with GVHD. Polymorphisms in detoxification genes such as glutathione S-transferases decreased the ability to detoxify cyclophosphamide metabolites due to lower enzyme activity, which leads to increased amounts of toxic metabolites and the development of III-IV acute GVHD. GSMT1*0 a single nucleotide polymorphism previously recognized as a risk factor for SOS was associated with a higher risk of SOS. We conclude that polymorphisms of genes involved in the metabolism of cyclophosphamide in our series are associated with severe grades of GVHD and toxicities (SOS and TRM) after haplo-HSCT and could be used to improve the clinical management of transplanted patients.</p
    corecore