6 research outputs found

    Difference in the action spectra for UVR8 monomerisation and HY5 transcript accumulation in Arabidopsis

    Get PDF
    The photoreceptor UV RESISTANCE LOCUS 8 (UVR8) activates photomorphogenic responses when plants are exposed to ultraviolet-B (UV-B) light. However, whereas the absorption spectrum of UVR8 peaks at 280 nm, action spectra for several photomorphogenic UV-B responses show maximal photon effectiveness at 290–300 nm. To investigate this apparent discrepancy we measured the effectiveness of UV wavelengths in initiating two responses in Arabidopsis: photoconversion of homodimeric UVR8 into the monomeric form, which is active in signaling, and accumulation of transcripts of the ELONGATED HYPOCOTYL 5 (HY5) transcription factor, which has a key role in UVR8-mediated responses. When purified UVR8 or Arabidopsis leaf extracts were exposed to UV light monomerisation was maximal at approximately 280 nm, which correlates with the UVR8 absorption spectrum. When intact plants were exposed to UV, monomerisation was most strongly initiated at approximately 290 nm, and this shift in maximal effectiveness could be explained by strong absorption or reflectance at 280 nm by leaf tissue. Notably, the action spectrum for accumulation of HY5 transcripts in the same leaf tissue samples used to assay UVR8 dimer/monomer status peaked at approximately 300 nm. Possible reasons for the difference in maximal photon effectiveness of UVR8 monomerisation and HY5 transcript accumulation in leaf tissue are discussed

    New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields

    Get PDF
    Many photosynthetic species have evolved CO(2)-concentrating mechanisms (CCMs) to improve the efficiency of CO(2) assimilation by Rubisco and reduce the negative impacts of photorespiration. However, the majority of plants (i.e. C3 plants) lack an active CCM. Thus, engineering a functional heterologous CCM into important C3 crops, such as rice (Oryza sativa) and wheat (Triticum aestivum), has become a key strategic ambition to enhance yield potential. Here, we review recent advances in our understanding of the pyrenoid-based CCM in the model green alga Chlamydomonas reinhardtii and engineering progress in C3 plants. We also discuss recent modeling work that has provided insights into the potential advantages of Rubisco condensation within the pyrenoid and the energetic costs of the Chlamydomonas CCM, which, together, will help to better guide future engineering approaches. Key findings include the potential benefits of Rubisco condensation for carboxylation efficiency and the need for a diffusional barrier around the pyrenoid matrix. We discuss a minimal set of components for the CCM to function and that active bicarbonate import into the chloroplast stroma may not be necessary for a functional pyrenoid-based CCM in planta. Thus, the roadmap for building a pyrenoid-based CCM into plant chloroplasts to enhance the efficiency of photosynthesis now appears clearer with new challenges and opportunities

    The small subunit of Rubisco and its potential as an engineering target

    Get PDF
    Rubisco catalyses the first rate-limiting step in CO2 fixation and is responsible for the vast majority of organic carbon present in the biosphere. The function and regulation of Rubisco remain an important research topic and a longstanding engineering target to enhance the efficiency of photosynthesis for agriculture and green biotechnology. The most abundant form of Rubisco (Form I) consists of eight large and eight small subunits, and is found in all plants, algae, cyanobacteria, and most phototrophic and chemolithoautotrophic proteobacteria. Although the active sites of Rubisco are located on the large subunits, expression of the small subunit regulates the size of the Rubisco pool in plants and can influence the overall catalytic efficiency of the Rubisco complex. The small subunit is now receiving increasing attention as a potential engineering target to improve the performance of Rubisco. Here we review our current understanding of the role of the small subunit and our growing capacity to explore its potential to modulate Rubisco catalysis using engineering biology approaches

    Regulation of Arabidopsis gene expression by low fluence rate UV-B independently of UVR8 and stress signaling

    Get PDF
    UV-B exposure of plants regulates expression of numerous genes concerned with various responses. Sudden exposure of non-acclimated plants to high fluence rate, short wavelength UV-B induces expression via stress-related signaling pathways that are not specific to the UV-B stimulus, whereas low fluence rates of UV-B can regulate expression via the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8). However, there is little information about whether non-stressful, low fluence rate UV-B treatments can activate gene expression independently of UVR8. Here, transcriptomic analysis of wild-type and uvr8 mutant Arabidopsis exposed to low fluence rate UV-B showed that numerous genes were regulated independently of UVR8. Moreover, nearly all of these genes were distinct to those induced by stress treatments. A small number of genes were expressed at all UV-B fluence rates employed and may be concerned with activation of eustress responses that facilitate acclimation to changing conditions. Expression of the gene encoding the transcription factor ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 13 (ANAC13) was studied to characterise a low fluence rate, UVR8-independent response. ANAC13 is induced by as little as 0.1 ÎŒmol m−2 s−1 UV-B and its regulation is independent of components of the canonical UVR8 signaling pathway COP1 and HY5/HYH. Furthermore, UV-B induced expression of ANAC13 is independent of the photoreceptors CRY1, CRY2, PHOT1 and PHOT2 and phytochromes A, B, D and E. ANAC13 expression is induced over a range of UV-B wavelengths at low doses, with maximum response at 310 nm. This study provides a basis for further investigation of UVR8 and stress independent, low fluence rate UV-B signaling pathway(s)

    Role of tryptophans in UVR8 photoreceptor function in arabidopsis

    No full text
    Plants are exposed to a variety of environmental cues that can affect their development. Of these, light is the most important as apart from being their energy source, it also serves as an informational cue that will allow them to control a range of photomorphogenic responses throughout their life cycle. Due to their sessile nature, plants are inevitably exposed to the highest energy photons of the solar radiation that reach the Earth’s surface, Ultraviolet-B (UV-B) light. Although being a potentially harmful and damaging agent, UV-B also acts as a key environmental signal that will allow regulation of several aspects of plant metabolism, morphology and physiology via differential regulation of gene expression. These photomorphogenic responses UV-B light such as gene expression, inhibition of hypocotyl elongation, leaf expansion or increased biosynthesis of UV-B absorbing compounds like flavonoids, are activated by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8) after exposure to low intensity ultraviolet-B (UV-B) (Jenkins, 2017a). ELONGATED HYPOCOTYL 5 (HY5) is one of the genes regulated by UVR8 which has a key-role in UVR8-mediated responses. Its transcription activates rapidly after exposure to UV-B and it has been found to regulate approximately one half of the genes regulated by UVR8. Additionally, the hyper sensitivity of hy5 mutant to low UV-B levels has further confirmed its important role in UVR8-mediated signalling (Brown et al., 2005; Brown & Jenkins, 2008). In the absence of UV-B, UVR8 is present as a homodimer in the cytosol and nucleus. The most upstream event of the UVR8-signalling pathway is its monomerisation followed by perception of UV-B. This will lead to conformational changes that will allow interaction to CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), subsequent nuclear accumulation and initiation of the photomorphogenic responses (Jenkins, 2014b). Recent in vitro and in vivo studies have shown that UVR8 monomer can undergo UV-B photoreception as a constitutively monomeric UVR8 mutant can activate photomorphogenic responses after UV-B perception (Heilmann et al., 2016). Whereas the absorption spectrum of UVR8 peaks at 280 nm (Christie et al., 2012), the action spectra of several photomorphogenic UV responses show maximal photon effectiveness at 290-300 nm (Díaz-Ramos et al., 2018). To investigate this discrepancy, the wavelength effectiveness of two UV responses were measured: UVR8 monomerisation and the accumulation of HY5 transcripts. When exposing intact plants, monomerisation peaked at 290 nm, whereas the accumulation of HY5 transcripts, measured in the same plant tissue samples, was maximal at 300 nm. This inconsistency was thought to be due to photoreception of UV-B made by UVR8 dimer and monomer would shift the peak of HY5 transcript accumulation to the longer wavelengths. Therefore, the constitutively monomeric mutant was also tested for wavelength effectiveness of HY5 transcript accumulation. Results showed that the UVR8 dimer was more efficient in responding to UV-B than UVR8 monomer. The monomer had a major peak at 295 nm and a more reciprocate response to the longer wavelengths (300 and 305 nm) than the shorter ones (285 and 290 nm). An important characteristic of UVR8, which makes it different from other plant photoreceptors is that it does not employ an external co-factor as a chromophore. UV-B perception by UVR8 is done via tryptophans located in the dimer interface (Christie et al., 2012; Wu et al., 2012). UVR8 is rich in aromatic residues it contains six Trps in the core of the protein, seven in the dimer interface and one in the C-terminal. UVR8 has a conserved and repeated motif GWRHT that generates a triad of closely packed tryptophan residues (W233, W285 and W337). These together with W94 from the other monomer form a Trp pyramid of excitonically coupled orbitals in the dimer interface (Christie et al., 2012; Wu et al., 2012). In vitro studies have shown that proton-coupled electron transfer constitutes the photoactivation mechanism of UVR8 (Mathes et al., 2015). Furthermore, W285 and W233 have been shown to be the key players in UV-B photoreception (Christie et al., 2012; Huang et al., 2014; O'Hara & Jenkins, 2012; Rizzini et al., 2011; Wu et al., 2012). The role of the rest of the UVR8 Trp in UV-B photoreception in vivo has been analysed previously with results showing the Trps located in the core are not important for UVR8 function and some of them have a role in maintaining UVR8 structure (O'Hara & Jenkins, 2012). Moreover, apart from W285 and W233 Trps in the dimer interface are not essential for structure or function (Huang et al., 2014; O'Hara & Jenkins, 2012). These studies analysed mutation of this Trps under saturating UV-B conditions so a potential role under non-saturating conditions has not been defined yet. In this research, conserved mutations of the six core Trps to Tyrs produced a very unstable UVR8 protein that was able to form the homodimer in the absence of UV-B and monomerise in response to it, further confirming their role in UVR8 structure. Additionally, the contribution of the other 5 tryptophans in the dimer interface to UV-B photoreception was analysed under non-saturating UV-B. Mutations of tryptophans W94F, W337F and W198/250/302F were found to weaken the interaction between the monomers in the dimer interface at different degrees and decrease their efficiency in generating a response (HY5 transcript accumulation), when plants were exposed to different doses of UV-B. These mutants were also tested for wavelength effectiveness experiments with results showing a major peak at 295 nm, consistent with the monomeric UVR8 mutant and WT GFP-UVR8. Furthermore, the possibility of these Trps acting as light harvesters of UV-B was confirmed
    corecore