480 research outputs found

    Texture Evolution of AZ31 Magnesium Alloy Sheet at High Strain Rates

    Get PDF
    In the current contribution the mechanical behaviour at high strain rates of AZ31 magnesium alloy sheet is studied. Uniaxial deformation properties were studied by means of tensile split Hopkinson pressure bar (SHPB) at different temperatures. The influence of the strain rate and temperature on the deformation mechanisms was investigated by means of electron backscatter diffraction (EBSD) and neutron diffraction. It is shown that twinning plays an important role on high strain rate deformation of this alloy, even at elevated temperatures. Significant evidence of prismatic slip as a deformation mechanism is observed, also at warm temperatures, leading to the alignment of directions with the tensile axis and to a spread of the intensities of the basal pole figure towards the in-plane direction perpendicular to the tensile axis. The rate of decrease of the CRSS of non-basal systems is observed to be slower than at quasi-static rates. Secondary twinning and pyramidal slip were also outlined for some conditions. At warm temperatures, in contrast to quasi-static range, a generalized dynamic recrystallization is not observed. Moreover, the activation of rotational recrystallization mechanisms is reporte

    Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature

    Full text link
    The microstructural evolution of an AZ31 rolled sheet during dynamic deformation at strain rates of ∼103 s−1 has been investigated by electron backscatter diffraction, X-ray and neutron diffraction. The influence of orientation on the predominant deformation mechanisms and on the recovery processes taking place during deformation has been systematically examined. The results have been compared with those corresponding to the same alloy tested quasi-statically under equivalent conditions. It has been found that strain rate enhances the activation of extension twinning dramatically, while contraction and secondary twinning are not significantly influenced. The polarity of extension twinning is even reversed in some grains under selected testing conditions. Significant grain subdivision by the formation of geometrically necessary boundaries (GNBs) takes place during both quasi-static and dynamic deformation of this AZ31 alloy. It is remarkable that GNBs of high misorientations form even at the highest strain rates. The phenomenon of recovery has been found to be orientation dependen

    On the generalised Chaplygin gas: worse than a big rip or quieter than a sudden singularity?

    Full text link
    Although it has been believed that the models with generalised Chaplygin gas do not contain singularities, in a previous work we have studied how a big freeze could take place in some kinds of phantom generalised Chaplygin gas. In the present work, we study some types of generalised Chaplygin gas in order to show how different sorts of singularities could appears in such models, in the future or in the past. We point out that: (i) singularities may not be originated from the phantom nature of the fluid, and (ii) if initially the tension of the brane in a brane-world Chaplygin model is large enough then an infrared cut off appears in the past.Comment: 19 pages, 6 figures. Discussion expanded and references added. Version to appear in the International Journal of Modern Physics

    A dark energy multiverse

    Get PDF
    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunchs or big rips singularities. Classicaly these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe

    On the properties of GaP supersaturated with Ti

    Get PDF
    We have fabricated GaP supersaturated with Ti by means of ion implantation and pulsed-laser melting to obtain an intermediate band material with applications in photovoltaics. This material has a strong sheet photoconductance at energies below the bandgap of GaP and it seems to be passivated by a Ga defective GaPO oxide layer during the laser process. Passivation is consistently analyzed by sheet photoconductance and photoluminescence measurements. We report on the structural quality of the resulting layers and analyze the energy of the new optical transitions measured on GaP:Ti. A collapse found in the sheet photoconductance spectra of GaP:Ti samples fabricated on undoped substrates is explained by the negative photoconductivity phenomenon. (C) 2019 Elsevier B.V. All rights reserved

    Role of the employment status and education of mothers in the prevalence of intestinal parasitic infections in Mexican rural schoolchildren

    Get PDF
    <p><b>Background:</b> Intestinal parasitic infections are a public health problem in developing countries such as Mexico. As a result, two governmental programmes have been implemented: a) "National Deworming Campaign" and b) "Opportunities" aimed at maternal care. However, both programmes are developed separately and their impact is still unknown. We independently investigated whether a variety of socio-economic factors, including maternal education and employment levels, were associated with intestinal parasite infection in rural school children.</p> <p><b>Methods:</b> This cross-sectional study was conducted in 12 rural communities in two Mexican states. The study sites and populations were selected on the basis of the following traits: a) presence of activities by the national administration of albendazole, b) high rates of intestinal parasitism, c) little access to medical examination, and d) a population having less than 2,500 inhabitants. A total of 507 schoolchildren (mean age 8.2 years) were recruited and 1,521 stool samples collected (3 per child). Socio-economic information was obtained by an oral questionnaire. Regression modelling was used to determine the association of socio-economic indicators and intestinal parasitism.</p> <p><b>Results:</b> More than half of the schoolchildren showed poliparasitism (52%) and protozoan infections (65%). The prevalence of helminth infections was higher in children from Oaxaca (53%) than in those from Sinaloa (33%) (p < 0.0001). Giardia duodenalis and Hymenolepis nana showed a high prevalence in both states. Ascaris lumbricoides, Trichuris trichiura and Entamoeba hystolitica/dispar showed low prevalence. Children from lower-income families and with unemployed and less educated mothers showed higher risk of intestinal parasitism (odds ratio (OR) 6.0, 95% confidence interval (CI) 1.6–22.6; OR 4.5, 95% CI 2.5–8.2; OR 3.3, 95% CI 1.5–7.4 respectively). Defecation in open areas was also a high risk factor for infection (OR 2.4, 95% CI 2.0–3.0).</p> <p><b>Conclusion:</b> Intestinal parasitism remains an important public health problem in Sinaloa (north-western Mexico) and Oaxaca (south-eastern Mexico). Lower income, defecation in open areas, employment status and a lower education level of mothers were the significant factors related to these infections. We conclude that mothers should be involved in health initiatives to control intestinal parasitism in Mexico.</p&gt

    Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method

    Get PDF
    The bonding structure and hydrogen content of amorphous hydrogenated silicon nitride (a-SiNx:H) thin films have been investigated by infrared spectroscopy and ion beam techniques. Electron cyclotron resonance plasma enhanced chemical vapor deposition was used to produce these films under different values of gas flow ratio, deposition temperature, and microwave power. The amount of bonded hydrogen was calculated from the N-H and Si-H infrared absorption bands. An increase of the SiH4 partial pressure during deposition was found to have the same effect on the H content as an increase of the substrate temperature: both cause a decrease of the N-H bond density and an increase in the number of Si-H bonds. This is explained by a competitive process in the formation of N-H and Si-H bonds during the growth of the film, whereby Si-H bonds are favored at the expense of N-H bonds when either the SiH4 flow or the substrate temperature are increased. Such tendency to chemical order is compared with previous results in which the same behavior was induced by thermal annealing or ion beam bombardment

    Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors

    Get PDF
    [Abstract] The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or metabolic networks. However, the applications are not restricted to the world of molecules and can be extended to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, the development of the field of Artificial Intelligence has led to the formulation of computational algorithms whose design is based on the structure and functioning of networks of biological neurons. These algorithms, called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical parameters that encode information of the network (for example centralities/node descriptors) can be used as inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the molecular structure of drugs and to study complex networks. In this work, we explore for the first time the possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of order kth (Wk). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, we calculated the Wk(i) values for a very high number of nodes (>100,000) in more than 100 different complex networks using the software MI-NODES. These networks were grouped according to the field of application. Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, we analyzed other biological and legal and social networks. These include the Interaction Web Database Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law Network (SFLN). The calculated Wk(i) values were used as inputs for different ANNs in order to discriminate correct node connectivity patterns from incorrect random patterns. The MIANN models obtained present good values of Sensitivity/Specificity (%): MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). These preliminary results are very promising from the point of view of a first exploratory study and suggest that the use of these models could be extended to the high-throughput re-evaluation of connectivity in known complex networks (collation)

    Monitoring the complex benthic habitat on semi-dark underwater marine caves using photogrammetry-based 3D reconstructions

    Get PDF
    Marine caves are dark environments considered a priority habitat for conservation included in the EU Habitats Directive (H8330). They harbor fragile benthic communities and represent a major reservoir of marine biodiversity. However, there is a lack of knowledge of these habitats due to the difficulties of creating detailed benthic maps and characterizing the biodiversity, structure, and dynamics of their communities. The uniqueness of marine caves fosters their popularity among recreational divers, who can cause disturbances through abrasion of the biota, resuspension of sediment, and accumulation of exhaled air bubbles in the caves' ceilings. This study aims to build a monitoring framework to characterize the structure and temporal dynamics of this complex habitat using Structurefrom- Motion (SfM) photogrammetry. SfM is a novel, non-invasive technique that allows a major advancement in the monitoring of changes in the cave’s community assemblages. This method relies on images acquired by 4K video footage to build fine-scaled 3D digital models of the substrate using overlapping imagery. For this study, we combined SfM photogrammetry and photo quadrats extracted from the video recordings. We evaluate the effectiveness of this methodology in a marine cave highly frequented by divers, located in Illa de l’Aire (Balearic Islands, Spain), and carried out two surveys before and after the diving season (2019-2021). As a result, we found a loss of 25 colonies of bryozoans with fragile skeletons, like Schizoretepora sp., and 8 individual sponges with globose morphotypes. Our results indicate that this methodology enables accurate and efficient monitoring of benthic communities in underwater caves that allow us to better understand their dynamics and, therefore, to develop the need management measures
    corecore