24 research outputs found

    Association Patterns in Saproxylic Insect Networks in Three Iberian Mediterranean Woodlands and Their Resistance to Microhabitat Loss

    Get PDF
    The assessment of the relationship between species diversity, species interactions and environmental characteristics is indispensable for understanding network architecture and ecological distribution in complex networks. Saproxylic insect communities inhabiting tree hollow microhabitats within Mediterranean woodlands are highly dependent on woodland configuration and on microhabitat supply they harbor, so can be studied under the network analysis perspective. We assessed the differences in interacting patterns according to woodland site, and analysed the importance of functional species in modelling network architecture. We then evaluated their implications for saproxylic assemblages’ persistence, through simulations of three possible scenarios of loss of tree hollow microhabitat. Tree hollow-saproxylic insect networks per woodland site presented a significant nested pattern. Those woodlands with higher complexity of tree individuals and tree hollow microhabitats also housed higher species/interactions diversity and complexity of saproxylic networks, and exhibited a higher degree of nestedness, suggesting that a higher woodland complexity positively influences saproxylic diversity and interaction complexity, thus determining higher degree of nestedness. Moreover, the number of insects acting as key interconnectors (nodes falling into the core region, using core/periphery tests) was similar among woodland sites, but the species identity varied on each. Such differences in insect core composition among woodland sites suggest the functional role they depict at woodland scale. Tree hollows acting as core corresponded with large tree hollows near the ground and simultaneously housing various breeding microsites, whereas core insects were species mediating relevant ecological interactions within saproxylic communities, e.g. predation, competitive or facilitation interactions. Differences in network patterns and tree hollow characteristics among woodland sites clearly defined different sensitivity to microhabitat loss, and higher saproxylic diversity and woodland complexity showed positive relation with robustness. These results highlight that woodland complexity goes hand in hand with biotic and ecological complexity of saproxylic networks, and together exhibited positive effects on network robustness.The research Projects I+D CGL2011-23658 y CGL2012-31669 of the Spanish Minister of Science provided economic support

    Asymmetries in specialization in ant–plant mutualistic networks

    No full text
    Mutualistic networks involving plants and their pollinators or frugivores have been shown recently to exhibit a particular asymmetrical organization of interactions among species called nestedness: a core of reciprocal generalists accompanied by specialist species that interact almost exclusively with generalists. This structure contrasts with compartmentalized assemblage structures that have been verified in antagonistic food webs. Here we evaluated whether nestedness is a property of another type of mutualism—the interactions between ants and extrafloral nectary-bearing plants—and whether species richness may lead to differences in degree of nestedness among biological communities. We investigated network structure in four communities in Mexico. Nested patterns in ant–plant networks were very similar to those previously reported for pollination and frugivore systems, indicating that this form of asymmetry in specialization is a common feature of mutualisms between free-living species, but not always present in species-poor systems. Other ecological factors also appeared to contribute to the nested asymmetry in specialization, because some assemblages showed more extreme asymmetry than others even when species richness was held constant. Our results support a promising approach for the development of multispecies coevolutionary theory, leading to the idea that specialization may coevolve in different but simple ways in antagonistic and mutualistic assemblages

    Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    No full text
    Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences

    The indirect paths to cascading effects of extinctions in mutualistic networks

    No full text
    COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPBiodiversity loss is a hallmark of our times, but predicting its consequences is challenging. Ecological interactions form complex networks with multiple direct and indirect paths through which the impacts of an extinction may propagate. Here we show that101718COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP001Sem informação2018/14809‐0This work was conducted as a part of the “Spatiotemporal variation and dynamics in ecological networks” Working Group at the National Institute for Mathematical and Biological Synthesis, supported by the National Science Foundation through NSF Award DBI‐

    Networks descriptors for individual–based ant–plant networks involving three plant species: <i>Chamaecrista mucronata</i> (Leguminosae–Caesalpinioideae), <i>Stachytarpheta glabra</i> (Verbenaceae), and <i>Qualea grandiflora</i> (Vochysiaceae).

    No full text
    <p>Values indicate Mean ± SD. Sampling of ant–plant interactions were performed in the Brazilian Neotropical Savanna (see text for more information).</p>a<p>All ant–plant networks were significantly nested (P<0.05).</p>b<p>No ant–plant network showed a modular pattern of interaction (P>0.05).</p

    Individual ant–plant networks sampled in the Brazilian Neotropical Savanna involving for three plant species: (A) <i>Chamaecrista mucronata</i> (Leguminosae–Caesalpinioideae), (B) <i>Stachytarpheta glabra</i> (Verbenaceae), and (C) <i>Qualea grandiflora</i> (Vochysiaceae).

    No full text
    <p>For each plant species we built ant–plant networks using diurnal, nocturnal, and both together sampling. Within each network, node represents one ant species (left) or plant individual (right), and lines represent ant–plant interactions. The nodes are arranged according their position in the nestedness ranking. Rectangle height is proportional to the number of interactions of each species. Asterisks (*) and red rectangles denote ant species that were present in the generalist core. Species codes are in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0099838#pone.0099838.s001" target="_blank">Appendix S1</a>.</p
    corecore