204 research outputs found

    Interplay between Human Intestinal Microbiota and Gut-to-Brain Axis: Relationship with Autism Spectrum Disorders

    Get PDF
    A growing body of scientific reports suggests a relevant key role of human intestinal microbiota (HIM) in maintaining the host’s physiological and mental balance; thus any disturbance in the microbiota diversity and/or concentrations may result in impaired stimulation of the gastrointestinal (GI) system-central nervous system (CNS) bidirectional pathway, termed gut-to-brain axis. Recent data show that HIM composition is significantly unbalanced among a subset of autism spectrum disorder (ASD) subjects, as compared with non-ASD siblings or age-matched control subjects. Several authors claim that specific changes in HIM (diet-based alteration of Bacteroidetes/Firmicutes ratio and death of predominant microbiota after antibiotic treatments, among others) could either trigger or be highly associated events with persistent ASD signs and behaviors. Whether HIM plays a causative or a circumstantial role in ASD severity, then HIM manipulation might be applied as a therapeutic alternative to improve ASD clinical manifestations and behaviors

    Towards an increase of flash flood geomorphic effects due to gravel mining and ground subsidence in Nogalte stream (Murcia, SE Spain)

    Get PDF
    Transition from endorheic alluvial fan environments to well-channelized fluvial systems in natural conditions may occur in response to base-level fluctuations. However, human-induced changes in semi-arid regions can also be responsible for similar unforeseen modifications. Our results confirm that in-channel gravel mining and aquifer overexploitation over the last 50 years in the case study area have changed the natural stability of the Nogalte stream and, as a result, its geomorphic parameters including channel depth and longitudinal profile have begun to adapt to the new situation. Using interferometric synthetic aperture radar (InSAR) data we obtain maximum values for ground subsidence in the Upper GuadalentĂ­n Basin of  ∌ 10 cm yr−1 for the period 2003–2010. In this context of a lowered base level, the river is changing its natural flood model to a more powerful one. A comparison of the 1973 flood event, the most dramatic flood event ever recorded in the area, with the 2012 event, where there was a similar discharge but a sediment load deficit, reveals greater changes and a new flooding pattern and extension. In-channel gravel mining may be responsible for significant local changes in channel incision and profile. This, together with the collateral effects of aquifer overexploitation, can favour increased river velocity and stream power, which intensify the consequences of the flooding. The results obtained here clearly demonstrate an existing transition from the former alluvial pattern to a confined fluvial trend, which may become more pronounced in the future due to the time lag between the drop in aquifer level and ground subsidence, and introduce a new scenario to be taken into consideration in future natural hazard planning in this area.s. This research was partially funded by projects CGL 2011-23857, ESP2013-47780-C2-2-R and CGL2013-47412-C2-1-P (Spanish Ministry of Economy and Competitiveness).Peer reviewe

    Synthesis and Luminescent Properties of Silicon Nanocrystals

    Get PDF
    Nowadays, study of silicon-based visible light-emitting devices has increased due to large-scale microelectronic integration. Since then different physical and chemical processes have been performed to convert bulk silicon (Si) into a light-emitting material. From discovery of Photoluminescence (PL) in porous Silicon by Canham, a new field of research was opened in optical properties of the Si nanocrystals (Si-NCs) embedded in a dielectric matrix, such as SRO (silicon-rich oxide) and SRN (silicon-rich nitride). In this respect, SRO films obtained by sputtering technique have proved to be an option for light-emitting capacitors (LECs). For the synthesis of SRO films, growth parameters should be considered; Si-excess, growth temperature and annealing temperature. Such parameters affect generation of radiative defects, distribution of Si-NCs and luminescent properties. In this chapter, we report synthesis, structural and luminescent properties of SRO monolayers and SRO/SiO2 multilayers (MLs) obtained by sputtering technique modifying Si-excess, thickness and thermal treatments

    Photoelectric Properties of MOS-like Structures with Twofold SRO Films

    Get PDF
    AbstractThe optical properties of silicon rich oxide (SRO) have been deeply studied because, between other reasons, they emit an intense photoluminescence (PL) from visible to the near infrared range when excited with UV light. MOS-like structures with SRO film as the active layer have shown an enhanced conductivity under different illumination conditions. In this paper, MOS-like structures with double SRO layer were fabricated in order to have a barrier to isolate the silicon substrate from the active SRO layer. Results show that all structures have a higher current when light shines on them than that obtained under dark conditions. A possible application of this photo-effect can be used to increase the response of photodetectors and silicon solar cells

    Time delay evaluation on thewater-leaving irradiance retrieved from empirical models and satellite imagery

    Get PDF
    Temporal delays and spatial randomness between ground-based data and satellite overpass involve important deviations between the empirical model output and real data; these are factors poorly considered in the model calibration. The inorganic matter-generated turbidity in Lake Chapala (Mexico) was taken as a study case to expose the influence of such factors. Ground-based data from this study and historical records were used as references. We take advantage of the at-surface reflectance from Landsat-8, sun-glint corrections, a reduced NIR-band range, and null organic matter incidence in these wavelengths to diminish the physical phenomena-related radiometric artifacts; leaving the spatio-temporal relationships as the principal factor inducing the model uncertainty. Non-linear correlations were assessed to calibrate the best empirical model; none of them presented a strong relationship (<73%), including that based on hourly delays. This last model had the best predictability only for the summer-fall season, explaining 71% of the turbidity variation in 2016, and 59% in 2017, with RMSEs < 24%. The instantaneous turbidity maps depicted the hydrodynamic complexity of the lake, highlighting a strong component of spatial randomness associated with the temporal delays. Reasonably, robust empirical models will be developed if several dates and sampling-sites are synchronized with more satellite overpasses.</p

    EMIR, the GTC NIR multi-object imager-spectrograph

    Get PDF
    EMIR, currently entering into its fabrication and AIV phase, will be one of the first common user instruments for the GTC, the 10 meter telescope under construction by GRANTECAN at the Roque de los Muchachos Observatory (Canary Islands, Spain). EMIR is being built by a Consortium of Spanish and French institutes led by the Instituto de AstrofĂ­sica de Canarias (IAC). EMIR is designed to realize one of the central goals of 10m class telescopes, allowing observers to obtain spectra for large numbers of faint sources in a time-efficient manner. EMIR is primarily designed to be operated as a MOS in the K band, but others a wide range of observing modes, including imaging and spectroscopy, both long slit and multi-object, in the wavelength range 0.9 to 2.5 um. It is equipped with two innovative subsystems: a robotic reconfigurable multi-slit mask and dispersive elements formed by the combination of high quality distraction grating and conventional prisms, both at the heart of the instrument. The present status of development, expected performances, schedule and plans for scientific exploitation are described and discussed. The development and fabrication of EMIR is funded by GRANTECAN and the Plan Nacional de AstronomĂ­a y AstrofĂ­sica (National Plan for Astronomy and Astrophysics, Spain).Peer ReviewedPostprint (published version

    Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory

    Full text link
    The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been used for the past 25 years as a reference source in TeV astronomy, for calibration and verification of new TeV instruments. The High Altitude Water Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe the Crab Nebula at high significance across nearly the full spectrum of energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view, nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC's sensitivity improves with the gamma-ray energy. Above ∌\sim1 TeV the sensitivity is driven by the best background rejection and angular resolution ever achieved for a wide-field ground array. We present a time-integrated analysis of the Crab using 507 live days of HAWC data from 2014 November to 2016 June. The spectrum of the Crab is fit to a function of the form ϕ(E)=ϕ0(E/E0)−α−ÎČ⋅ln(E/E0)\phi(E) = \phi_0 (E/E_{0})^{-\alpha -\beta\cdot{\rm{ln}}(E/E_{0})}. The data is well-fit with values of α=2.63±0.03\alpha=2.63\pm0.03, ÎČ=0.15±0.03\beta=0.15\pm0.03, and log10(ϕ0 cm2 s TeV)=−12.60±0.02_{10}(\phi_0~{\rm{cm}^2}~{\rm{s}}~{\rm{TeV}})=-12.60\pm0.02 when E0E_{0} is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the systematic errors in this HAWC measurement is discussed and estimated to be ±\pm50\% in the photon flux between 1 and 37 TeV. Confirmation of the Crab flux serves to establish the HAWC instrument's sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of current-generation observatories and open a new view of 2/3 of the sky above 10 TeV.Comment: Submitted 2017/01/06 to the Astrophysical Journa

    Daily monitoring of TeV gamma-ray emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC

    Full text link
    We present results from daily monitoring of gamma rays in the energy range ∌0.5\sim0.5 to ∌100\sim100 TeV with the first 17 months of data from the High Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2 steradians and duty cycle of >95>95% are unique features compared to other TeV observatories that allow us to observe every source that transits over HAWC for up to ∌6\sim6 hours each sidereal day. This regular sampling yields unprecedented light curves from unbiased measurements that are independent of seasons or weather conditions. For the Crab Nebula as a reference source we find no variability in the TeV band. Our main focus is the study of the TeV blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a power law index Γ=2.21±0.14stat±0.20sys\Gamma=2.21 \pm0.14_{\mathrm{stat}}\pm0.20_{\mathrm{sys}} and an exponential cut-off E0=5.4±1.1stat±1.0sysE_0=5.4 \pm 1.1_{\mathrm{stat}}\pm 1.0_{\mathrm{sys}} TeV. For Mrk 501, we find an index Γ=1.60±0.30stat±0.20sys\Gamma=1.60\pm 0.30_{\mathrm{stat}} \pm 0.20_{\mathrm{sys}} and exponential cut-off E0=5.7±1.6stat±1.0sysE_0=5.7\pm 1.6_{\mathrm{stat}} \pm 1.0_{\mathrm{sys}} TeV. The light curves for both sources show clear variability and a Bayesian analysis is applied to identify changes between flux states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab Nebula flux by a factor of approximately five. For Mrk 501, several transits show fluxes in excess of three times the Crab Nebula flux. In a comparison to lower energy gamma-ray and X-ray monitoring data with comparable sampling we cannot identify clear counterparts for the most significant flaring features observed by HAWC.Comment: 18 pages, 10 figures, accepted for publication in The Astrophysical Journa
    • 

    corecore