10 research outputs found
Thiophene-Fused Tropones as Chemical Warfare Agent-Responsive Building Blocks
We report the synthesis of dithienobenzotropone-based conjugated alternating copolymers by direct arylation polycondensation. Postpolymerization modification by hydride reduction yields cross-conjugated, reactive hydroxyl-containing copolymers that undergo phosphorylation and ionization upon exposure to the chemical warfare agent mimic diethylchlorophosphate (DCP). The resulting conjugated, cationic copolymer is highly colored and facilitates the spectroscopic and colorimetric detection of DCP in both solution and thin-film measurements.United States. Defense Threat Reduction Agency. Chemical and Biological Technologies Department (Grant BA12PHM123
Molecular Interactions of Prodiginines with the BH3 Domain of Anti-Apoptotic Bcl-2 Family Members
Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are
currently under preclinical and clinical trials. The molecular target(s) of these agents, however, is an open question.
Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2
protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate
a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate
that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations
with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular
interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the
development of more specific inhibitors of anti-apoptotic BCL-2 proteins.Spanish government and the European Union (FIS-PI10/00338) and from the ERC-2009-Adg
25027-PELE European project
Fluorescent Discrimination between Traces of Chemical Warfare Agents and Their Mimics
An array of fluorogenic probes is able to
discriminate between nerve agents, sarin, soman, tabun,
VX and their mimics, in water or organic solvent, by
qualitative fluorescence patterns and quantitative multivariate
analysis, thus making the system suitable for the inthe-
field detection of traces of chemical warfare agents as
well as to differentiate between the real nerve agents and
other related compounds.Ministerio
de Economía
y Competitividad, Spain (Project CTQ2012-
31611), Junta de Castilla y León, Consejería
de Educación y
Cultura y Fondo Social Europeo (Project BU246A12-1), the
European Commission, Seventh Framework Programme
(Project SNIFFER FP7-SEC-2012-312411) and the Swedish
Ministry of Defence (no. A403913
Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells
Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightlyby homeostasis