19 research outputs found

    Screening for neurodegeneration in Langerhans cell histiocytosis with neurofilament light in plasma

    Get PDF
    Patients with Langerhans cell histiocytosis (LCH) may develop progressive neurodegeneration in the central nervous system (ND-CNS-LCH). Neurofilament light protein (NFL) in cerebrospinal fluid (CSF) is a promising biomarker to detect and monitor ND-CNS-LCH. We compared paired samples of NFL in plasma (p-NFL) and CSF in 10 patients (19 samples). Nine samples had abnormal CSF-NFL (defined as ≄380 ng/l) with corresponding p-NFL ≄ 2 ng/l. Ten samples had CSF-NFL < 380 ng/l; eight (80%) with p-NFL < 2 ng/l (p < 0.001; Fisher's exact test). Thus, our results suggest that p-NFL may be used to screen for ND-CNS-LCH. Further studies are encouraged, including the role of p-NFL for monitoring of ND-CNS-LCH

    Human responses to cold and wind

    Get PDF
    Cold is stressful for the human being and has physical, subjective and physiological effects. Body cooling must be prevented to provide for the worker s comfort and safety in cold workplaces. The effects of cold were studied in view of the two predictive cold indices that are mainly used, IREQ (Insulation Required) for whole body cooling and WCI (Wind Chill Index) for bare skin cooling. The indices had scarcely been validated by physiological studies. WCI is mainly based on theoretical calculations and physical measurements. The influence of thermal state, light physical activity and wind speed on heat flows, temperature, cardiovascular and subjective responses and respiratory function were investigated at climate conditions calculated to be at the borderline of risk-no risk. Eight to ten young and middle-aged subjects participated in the studies. The subjects were dressed in multi-layer cold-protective clothing. They sat, stood or walked on a treadmill at 6 to 22 °C for 10-90 minutes in wind (1-6 m·s-1) and in the absence of wind. In one study the subjects were pre-cooled before the wind exposure. Even moderate wind speeds (2-6 m·s-1) at 10 °C caused the systolic and diastolic blood pressure to increase significantly, more at higher wind speed. They remained elevated without compensatory bradycardia. The air velocity also had effects on the skin temperatures. In about a fourth of the wind experiments the face temperature dropped to 0 °C. Pain was commonly reported at conditions below the risk level for frostbite in Wind Chill Index. The criteria of IREQ concerning body cooling were fulfilled, but hand temperatures were lower than recommended. In addition, finger temperatures were below 15 °C, which resulted in reduced manual performance. An increased exercise level was more effective to reheat fingers after cooling at 22 °C than adding insulation. At 10 °C moderate exercise reduced finger cooling more than low intensity exercise, but only at < 1 m·s-1. To be comfortable at low activity in cold it seems necessary to dress slightly more than indicated by IREQ and by thermal neutrality sensations. WCI seems to underestimate the cooling power of 5-6 m·s-1 at -10 °C of bare skin (e.g. face). The results provided suggestions for improving and developing IREQ and WCI. Prediction models for cold risk assessment should consider the large individual variation. The observations of blood pressure responses to cold wind exposure indicate that special attention should be taken at exposure to cold wind of physically inactive individuals, hypertensive persons and patients with heart disease.Kyla utgör en stressfaktor och har fysiologiska, subjektiva och fysikaliska effekter pĂ„ mĂ€nniskan. Nedkylning vid yrkesarbete mĂ„ste förhindras för att komfort och sĂ€kerhet ska rĂ„da vid kallt arbete. Effekter av kyla studerades med avseende pĂ„ de tvĂ„ vanligaste bedömningsmetoderna för kyla, IREQ (Insulation Required= isolationsbehov) för helkroppsavkylning och WCI (Wind Chill Index= vindkyleindex) för nedkylning av oskyddade kroppsdelar. Metoderna har inte validerats med fysiologiska studier i nĂ„gon större omfattning. WCI baseras frĂ€mst pĂ„ teoretiska berĂ€kningar och fysikaliska mĂ€tningar. PĂ„verkan av fysisk aktivitet och vindhastighet pĂ„ kropps- och hudtemperatur, pĂ„ kardiovaskulĂ€ra, respiratoriska och subjektiva reaktioner och vĂ€rmebalans undersöktes under klimatbetingelser nĂ€ra berĂ€knade risknivĂ„er. Åtta till tio unga och medelĂ„lders försökspersoner deltog, klĂ€dda i flera lager vĂ€lisolerande klĂ€der. De satt, stod och gick pĂ„ ett rullband vid 6 °C till 22 °C i 10-90 minuter i vind (1-6 m·s-1) och i vindstilla (0.2 m·s-1). I en studie kyldes försökspersonerna innan de exponerades för kall vind. Även mĂ„ttliga vindhastigheter (2-6 m·s-1) i 10 °C orsakade en signifikant ökning av det systoliska and diastoliska blodtrycket, som var större vid högre vindhastighet. Förhöjningen av blodtrycket kvarstod utan att kompenseras av en sĂ€nkning av hjĂ€rtfrekvensen. Lufthastigheten pĂ„verkade ocksĂ„ hudtemperaturerna. I en fjĂ€rdedel av vindförsöken föll ansiktstemperaturen till 0 °C. SmĂ€rta upplevdes ofta i vind. Kriterierna för nedkylning av kroppen i IREQ uppfylldes, men handtemperaturerna var lĂ€gre Ă€n de rekommenderade. Dessutom var fingertemperaturerna under 15 °C, vilket resulterade i försĂ€mrad manuell förmĂ„ga. Ökning av arbetsintensiteten var effektivare för att vĂ€rma upp fingrarna efter nedkylning i 22 °C Ă€n att öka klĂ€dernas isolation. I 10 °C minskade mĂ„ttligt arbete nedkylningen av fingrarna mer Ă€n arbete vid lĂ€gre intensitet, men bara dĂ„ vindhastigheten var < 1 m·s-1. För att kĂ€nna sig behaglig vid lĂ„g fysisk aktivitet i kyla tycks det som om nĂ„got mer isolation behövs Ă€n vad som rekommenderas i IREQ, Ă€ven dĂ„ termisk neutralitet upplevs. WCI tycks underskatta kyleffekten av 5-6 m·s-1 i -10 °C pĂ„ bar hud (t ex. ansikte). Resultaten gav förslag för att förbĂ€ttra och vidareutveckla IREQ och WCI. Bedömningsmetoder för fysiologiska risker i kyla bör ta hĂ€nsyn till den stora variationen mellan individer som observerades i kylaförsöken. De observerade blodtrycksreaktionerna vid exponering för kall vind kan innebĂ€ra att försiktighetsĂ„tgĂ€rder bör vidtas vid exponering för kyla och vind av personer som Ă€r fysiskt inaktiva, har förhöjt blodtryck eller hjĂ€rtsjukdom

    Det termiska klimatet pÄ arbetsplatsen

    No full text

    Effectiveness of a light-weight ice-vest for body cooling while wearing fire fighter’s protective clothing in the heat

    No full text
    The aim of the study was to examine the effects of wearing an ice-vest (ca 1 kg) on physiological and subjective responses in fire fighters. The experiments were carried out on a treadmill in a hot-dry environment. The physical cooling effect of the ice-vest was measured with a thermal manikin. The ice-vest effectively reduced skin temperatures under the vest. On average, heart rate was 10 beats min-1 lower, amount of sweating was reduced by 13%, and subjective sensation of effort and warmth were lower during work with the ice-vest compared to work without it. Thermal manikin tests indicated, that the useful energy available from the vest for body cooling was rather high (58%). In conclusion, the ice-vest reduces physiological and subjective strain responses during heavy work in the heat, and may promote efficient work time by 10%

    Correlations between aerobic capacity tests and field tests.

    No full text
    *<p>p<0.01. OBLA: Onset of blood lactate accumulation, LT: Lactate threshold. Percentage of maximal heart rate: % HR<sub>max</sub>. Performance in the 3000 m running test is presented as absolute (s) and relative performance in relation to body-weight (s·kg<sup>−1</sup>).VO<sub>2max</sub>: maximal oxygen uptake<i>* p<0.01.</i></p

    Anthropometrics and physical tests performance.

    No full text
    <p>Subject groups were: Male full-time firefighters (MFF), Male part-time firefighters (MPF), civilian men (CM), and civilian women (CW). Statistical Method (SM): Non-parametric tests (NP) are presented as medians ± Interquartile range (min-max), and parametric tests (P) are presented as means ± Standard deviation (min-max). One-Way ANOVA and Mann-Whitney (with Bonferroni correction) analysed subject group differences for P and NP variables, respectively. Only data for which there were significant differences among subject groups (p<0.01) are presented in the table, and marked with symbols in rows (*<sup>, †</sup>). Groups denoted with different symbols are significantly different (*different from<sup>†</sup>).</p><p>Investigated work tasks were: Carrying hose baskets up stairs (Stairs), Hose pulling (Pulling), Demolition at or after a fire (Demolition), Victim rescue (Rescue) and Carrying hose baskets over terrain (Terrain) Percentage use of maximal heart rate: % HR<sub>max</sub>. Performance in the 3000 m running test is presented as relative performance (in relation to body-weight: s·kg<sup>−1</sup>).</p>a<p><i>One CW subject did not begin the test.</i></p>b<p><i>One CW subject did not complete the test.</i></p

    Schematic view of the work task course.

    No full text
    <p>The four work tasks: <i>carrying hose baskets in a staircase</i> (A), <i>hose pulling</i> (B), <i>demolition at or after a fire</i> (C) and <i>victim rescue</i> (D), was performed in sequence with two minutes of rest between each work task. The subject on the photograph has given written informed consent, as outlined in the PLOS consent form, to publication of their photograph.</p
    corecore